- 机器学习模型监控警报系统设计:Prometheus+Evidently 实战教程
大熊计算机
机器学习prometheus人工智能
1.系统架构设计:从数据采集到智能告警(1)监控系统核心组件交互图预测请求监控指标告警规则通知渠道预测结果质量报告时序数据模型服务PrometheusExporterPrometheusServerAlertmanager邮件/Slack/WebhookEvidently服务可视化仪表盘图解:系统采用双引擎架构,Prometheus负责基础监控指标采集与告警触发,Evidently执行深度模型分析
- 鸿蒙关系型数据库实战:高效数据存储与管理
数据库harmonyos
在鸿蒙应用开发中,关系型数据库(RDB)是结构化数据存储的核心方案。通过深度实践,其基于SQLite的轻量级实现不仅性能出色,更提供了强大的事务支持和类型安全。以下是关键经验总结:三大核心优势:SQL兼容:完整支持SQL92标准语法线程安全:内置多线程读写锁机制加密存储:支持AES-256加密敏感数据关系型数据库实战封装及使用:在Utils目录下新建一个RdbUtils文件//./src/main
- 和李沐老师学深度学习--2.数据操作部分代码实现(学习笔记)
大家对代码有不懂地方都可以上网去查找,最好是有一定的数据分析基础比较容易理解,李沐老师课程视频链接我放在这里了大家有不懂都可以观看课程进行学习04数据操作+数据预处理【动手学深度学习v2】_哔哩哔哩_bilibili深度学习课程电子书:大家可以使用翻译插件观看书的内容Preface—DiveintoDeepLearning1.0.3documentation深度学习github项目:https:/
- AEPR人像磨皮润肤美容插件的使用指南
觉昧
本文还有配套的精品资源,点击获取简介:AEPR人像磨皮润肤美容插件是一款结合AdobeAfterEffects和Photoshop的专业图像处理工具,用于视频和图像后期制作。该插件简化了人像美容过程,提供美白、磨皮和润色功能,帮助用户获得理想的视觉美感。通过使用该插件,用户能够轻松改善肤色和皮肤质地,而高斯模糊、斑点修复和色彩平衡调整等技术则保证了皮肤质感的自然与细腻。为了实现最佳效果,用户需要遵
- 工厂模式深度解析:工厂方法 vs 抽象工厂
hixiaoyang
设计模式
1.核心概念对比1.1工厂方法模式(FactoryMethod)工厂方法模式定义一个创建对象的接口,但让子类决定实例化哪一个类。工厂方法使一个类的实例化延迟到其子类。关键结论:工厂方法是"单个产品等级结构"的创建解决方案,通过子类化实现具体创建逻辑1.2抽象工厂模式(AbstractFactory)抽象工厂模式提供一个创建一系列相关或相互依赖对象的接口,而无需指定它们具体的类。关键结论:抽象工厂是
- DeLorean联手Sui网络推出最新区块链订车,XBIT平台xaut今日价格行情飙升引热议
caijingshiye
区块链
币界网6月24日讯,全球豪华汽车领域迎来颠覆性变革!DeLorean汽车公司今日宣布,基于SuiNetwork打造的全球首个区块链汽车预订市场正式上线,用户可通过加密货币直接预订其旗舰电动跑车Alpha5,并在等待交付期间通过质押资产赚取收益。这一创新模式不仅解决了传统汽车预订的退款难、周期长等痛点,更将区块链技术的透明性与金融属性深度融合。受此消息刺激,去中心化交易所XBIT平台上的黄金稳定币x
- 机器视觉_图像算法(六)——形状矩(Hu)
智能之心
#机器视觉_图像算法形状矩opencv
图像形状矩:一个从一幅数字图形中计算出来的矩集,通常描述了该图像形状的全局特征,并提供了大量的关于该图像不同类型的几何特性信息,比如大小、位置、方向及形状等。一阶矩与形状有关,二阶矩显示曲线围绕直线平均值的扩展程度,三阶矩则是关于平均值的对称性的测量。由二阶矩和三阶矩可以导出一组共7个不变矩。而不变矩是图像的统计特性,满足平移、伸缩、旋转均不变的不变性,在图像识别领域得到了广泛的应用。一般由mom
- 基于opencv的鱼群检测和数量统计识别鱼群密度带界面
完整项目点文末名片查看获取一、项目简介本项目旨在通过计算机视觉技术,实现对视频中鱼类数量的自动检测与计数。利用OpenCV库进行图像处理,包括背景减除、形态学操作、轮廓检测等步骤,最终在视频帧中标记出鱼类并统计其数量。该系统可广泛应用于水产养殖、生态监测等领域,有助于提高工作效率和数据准确性。二、环境准备在开始项目之前,需要确保以下环境和工具已安装:Python:推荐使用Python3.6及以上版
- 目标跟踪领域经典论文解析
♢.*
目标跟踪人工智能计算机视觉
亲爱的小伙伴们,在求知的漫漫旅途中,若你对深度学习的奥秘、JAVA、PYTHON与SAP的奇妙世界,亦或是读研论文的撰写攻略有所探寻,那不妨给我一个小小的关注吧。我会精心筹备,在未来的日子里不定期地为大家呈上这些领域的知识宝藏与实用经验分享。每一个点赞,都如同春日里的一缕阳光,给予我满满的动力与温暖,让我们在学习成长的道路上相伴而行,共同进步✨。期待你的关注与点赞哟!目标跟踪是计算机视觉领域的一个
- MySQL之MVCC实现原理深度解析
AA-代码批发V哥
MySQLmysql数据库
MySQL之MVCC实现原理深度解析一、MVCC基础:为什么需要多版本控制?1.1并发访问的痛点1.2MVCC的核心目标二、MVCC核心组件:构建多版本世界的基石2.1隐藏字段:数据版本的"身份证"2.2Undo日志:版本回溯的"时间机器"2.2.1Undo日志类型2.2.2Undo日志的生命周期2.3版本链:数据演变的"历史轨迹"2.4ReadView:版本可见性的"过滤器"三、MVCC核心逻辑
- specpu2017安装/编译/运行测试总结
So_shine
linux调试工具和性能量化linux
目录前言一、源码镜像获取二、安装三、配置修改四、编译五、运行测试六、结果查看七、遇到的问题前言SPEC是标准性能评估公司(StandardPerformanceEvaluationCorporation)的简称。SPEC是由计算机厂商、系统集成商、大学、研究机构、咨询等多家公司组成的非营利性组织,这个组织的目标是建立、维护一套用于评估计算机系统的标准。SPECCPU测试中,测试系统的处理器、内存子
- specpu2017在arm64环境下的部署/测试
So_shine
specpu性能测试arm64环境部署
目录前言一、源码镜像获取二、安装三、配置修改四、编译五、运行测试六、结果查看七、遇到的问题前言SPEC是标准性能评估公司(StandardPerformanceEvaluationCorporation)的简称。SPEC是由计算机厂商、系统集成商、大学、研究机构、咨询等多家公司组成的非营利性组织,这个组织的目标是建立、维护一套用于评估计算机系统的标准。SPECCPU测试中,测试系统的处理器、内存子
- GORM深度解析:模型定义与数据库迁移最佳实践
Golang编程笔记
数据库oracleai
GORM深度解析:模型定义与数据库迁移最佳实践关键词:GORM、模型定义、数据库迁移、最佳实践、Go语言摘要:本文深入探讨了GORM这一强大的Go语言ORM库,详细介绍了模型定义的方法和技巧,以及数据库迁移的最佳实践。通过通俗易懂的语言和丰富的实例,帮助读者理解GORM的核心概念,掌握如何利用GORM高效地进行数据库操作。背景介绍目的和范围在Go语言开发中,与数据库进行交互是一项常见的任务。GOR
- 基于均值偏移算法的动态目标跟踪研究
Zoiny_楠
算法均值算法目标跟踪
摘要:目标跟踪技术是计算机视觉领域中重要研究课题之一,在人类生活、军事侦察、工业生产、医疗诊断、交通管理等多方面,都有广泛的应用,研究目标跟踪对人类生活、工程应用等具有现实的指导意义。在基于视觉的目标跟踪算法中,经典的Mean-Shift算法以其理论科学有效、操作简单易实现,跟踪性能较好等优势,一直是众多学者研究的热点。可算法也存在着许多缺陷。例如目标模型中混有背景信息的干扰,给目标定位带来了偏差
- 创客匠人:AI重构知识IP定位与变现效率新范式
创小匠
人工智能重构tcp/ip
知识付费行业深度变革的当下,创始人IP打造与知识变现的效率瓶颈日益凸显。定位模糊、流量获取成本高、内容生产低效等问题,成为阻碍IP发展的核心痛点。而行业先行者通过AI技术的深度应用,正为知识IP构建全新的发展范式,其中尤以率先布局AI技术体系的机构表现突出。AI驱动定位革新:从“试错探索”到“精准锚定”传统IP定位往往依赖经验试错,耗时数周甚至数月仍难以明确方向。而借助AI定位智能体,知识创作者可
- Redis ZSet 数据结构深度解析:原理、实现与实战全揭密!
程序猿Mr.wu
Redisredis数据结构缓存
一、前言:为什么要学习ZSet?在Redis的五大基础数据类型中,ZSet(SortedSet,有序集合)是一种非常强大而灵活的数据结构,广泛应用于排行榜、延时队列、权重排名等场景。如果说String是Redis的“最小原子”,那么ZSet就是Redis的“重量级选手”——不仅能存数据,还能排序查询,这正是它的魅力所在!二、ZSet是什么?和Set有啥区别?ZSet=Set+Score+排序!特性
- 小米YU7智能座舱的技术栈推演分析
Alex艾力的IT数字空间
微服务知识图谱图像处理数据分析聚类AudioLMnlp
小米YU7的智能座舱以“人车家全生态”战略为核心,深度融合小米在消费电子领域的优势与汽车智能化需求,构建了从硬件到软件、从交互到生态的完整技术体系。技术栈解析如下:一、硬件架构:高性能芯片与多屏交互旗舰级芯片组合高通骁龙8Gen3座舱SoC:采用4nm工艺,支持1.35秒极速启动应用、15分钟整车OTA升级,提供流畅的车机交互体验。英伟达DRIVEAGXThor平台:算力达700TOPS,基于Bl
- day39
心落薄荷糖
Python训练营python
#先继续之前的代码importtorchimporttorch.nnasnnimporttorch.optimasoptimfromtorch.utils.dataimportDataLoader,Dataset#DataLoader是PyTorch中用于加载数据的工具fromtorchvisionimportdatasets,transforms#torchvision是一个用于计算机视觉的库,
- 【图像处理入门】12. 综合项目与进阶:超分辨率、医学分割与工业检测
小米玄戒Andrew
图像处理:从入门到专家图像处理人工智能深度学习算法python计算机视觉CV
摘要本周将聚焦三个高价值的综合项目,打通传统算法与深度学习的技术壁垒。通过图像超分辨率重建对比传统方法与深度学习方案,掌握医学图像分割的U-Net实现,设计工业缺陷检测的完整流水线。每个项目均包含原理解析、代码实现与性能优化,帮助读者从“技术应用”迈向“系统设计”。一、项目1:图像超分辨率重建(从模糊到清晰的跨越)1.技术背景与核心指标超分辨率(SR)是通过算法将低分辨率(LR)图像恢复为高分辨率
- Densenet模型花卉图像分类
深度学习乐园
分类数据挖掘人工智能
项目源码获取方式见文章末尾!600多个深度学习项目资料,快来加入社群一起学习吧。《------往期经典推荐------》项目名称1.【基于CNN-RNN的影像报告生成】2.【卫星图像道路检测DeepLabV3Plus模型】3.【GAN模型实现二次元头像生成】4.【CNN模型实现mnist手写数字识别】5.【fasterRCNN模型实现飞机类目标检测】6.【CNN-LSTM住宅用电量预测】7.【VG
- 基于AFM注意因子分解机的推荐算法
深度学习乐园
深度学习实战项目深度学习科研项目推荐算法算法机器学习
关于深度实战社区我们是一个深度学习领域的独立工作室。团队成员有:中科大硕士、纽约大学硕士、浙江大学硕士、华东理工博士等,曾在腾讯、百度、德勤等担任算法工程师/产品经理。全网20多万+粉丝,拥有2篇国家级人工智能发明专利。社区特色:深度实战算法创新获取全部完整项目数据集、代码、视频教程,请进入官网:zzgcz.com。竞赛/论文/毕设项目辅导答疑,v:zzgcz_com1.项目简介项目A033基于A
- SD-WAN 是否支持固定 IP?深度解析企业网络架构中的关键问题
北极光SD-WAN组网
网络tcp/ip架构
近年来,随着企业数字化转型的深化,SD-WAN(软件定义广域网)因其灵活性、高效性和成本优化而备受关注。许多企业在部署SD-WAN时,会产生这样一个疑问:**SD-WAN是否提供固定IP?能否满足对固定IP的需求?**本文将从技术原理、应用场景和具体实现等角度深入探讨这个问题,帮助企业在网络架构设计中做出明智选择。##一、SD-WAN的技术背景与架构SD-WAN是一种基于软件定义网络(SDN)技术
- C8051F单片机在三轴伺服转台动力学模型与伺服算法仿真中的应用【附设计】
自动化设计|控制系统|毕业设计指导|工业自动化解决方案✨专业领域:程序设计与调试工业自动化控制系统HMI人机界面开发工业传感器应用电气控制系统设计工业网络通信擅长工具:西门子S7系列编程三菱/欧姆龙应用PIC单片机触摸屏界面设计电气CAD制图工业现场总线技术自动化设备调试主要内容:控制系统设计工业自动化方案规划电气原理图绘制控制程序编写与调试毕业论文指导毕业设计题目与程序设计✅具体问题可以私信或查
- 机器学习5——非参数估计
平和男人杨争争
山东大学机器学习期末复习机器学习概率论算法
非参数估计在参数估计中我们已经提到,想要估计后验概率P(ωi∣x)=p(x∣ωi)p(ωi)p(x)P\left(\omega_i\midx\right)=\frac{p\left(x\mid\omega_i\right)p\left(\omega_i\right)}{p(x)}P(ωi∣x)=p(x)p(x∣ωi)p(ωi),就需要估计类条件概率p(x∣ωi)p\left(x\mid\omega
- 机器学习4——参数估计之贝叶斯估计
平和男人杨争争
山东大学机器学习期末复习机器学习人工智能
贝叶斯估计问题建模:后验概率公式:P(ωi∣x,D)=P(x∣ωi,Di)P(ωi)∑j=1cP(x∣ωj,Dj)P(ωj)P\left(\omega_i\mid\mathbf{x},\mathcal{D}\right)=\frac{P\left(\mathbf{x}\mid\omega_i,\mathcal{D}_i\right)P\left(\omega_i\right)}{\sum_{j=1
- 生成式人工智能实战 | 深度卷积生成对抗网络(Deep Convolutional Generative Adversarial Network, DCGAN)
盼小辉丶
生成式人工智能实战150讲人工智能生成对抗网络神经网络
生成式人工智能实战|深度卷积生成对抗网络0.前言1.模型与数据集分析1.1模型分析1.2数据集介绍2.构建DCGAN生成人脸图像2.1数据处理2.2模型构建2.3模型训练0.前言深度卷积生成对抗网络(DeepConvolutionalGenerativeAdversarialNetworks,DCGAN)是基于生成对抗网络(ConvolutionalGenerativeAdversarialNet
- 深度学习实战:基于嵌入模型的AI应用开发
AIGC应用创新大全
AI人工智能与大数据应用开发MCP&Agent云算力网络人工智能深度学习ai
深度学习实战:基于嵌入模型的AI应用开发关键词:嵌入模型(EmbeddingModel)、深度学习、向量空间、语义表示、AI应用开发、相似性搜索、迁移学习摘要:本文将带你从0到1掌握基于嵌入模型的AI应用开发全流程。我们会用“翻译机”“数字身份证”等生活比喻拆解嵌入模型的核心原理,结合Python代码实战(BERT/CLIP模型)演示如何将文本、图像转化为可计算的语义向量,并通过“智能客服问答”“
- 机器学习3——参数估计之极大似然估计
平和男人杨争争
山东大学机器学习期末复习机器学习人工智能算法
参数估计问题背景:P(ωi∣x)=p(x∣ωi)P(ωi)p(x)p(x)=∑j=1cp(x∣ωj)P(ωj)\begin{aligned}&P\left(\omega_i\mid\mathbf{x}\right)=\frac{p\left(\mathbf{x}\mid\omega_i\right)P\left(\omega_i\right)}{p(\mathbf{x})}\\&p(\mathbf
- 杭州西湖断桥不断:3D扫描还原‘残雪‘视觉骗局
未来读啥科教资讯
3d
“断桥残雪”是西湖十景之一,所谓“视觉骗局”指的是在特定条件下,从远处看断桥仿佛断开的奇妙视觉效果。利用3D扫描技术还原这一效果可按以下步骤进行:数据采集3D扫描断桥:使用高精度的3D激光扫描仪对断桥及其周边环境进行全面扫描。从多个角度、不同距离对断桥的整体轮廓、桥身细节(如栏杆、石块纹理)进行数据采集,确保获取完整且精确的三维数据。收集周边环境数据:扫描断桥周边的湖水、堤岸、树木等环境元素,因为
- 2019-2020年线上睡眠市场深度分析报告
我就是夏迎春
本文还有配套的精品资源,点击获取简介:本报告全面分析了2019至2020年间中国线上消费者购买睡眠相关产品的行为和趋势。报告内容涉及市场概况、消费偏好、消费者行为、地域差异及未来展望,详细解读了消费者对多种睡眠产品的偏好及线上市场的发展。京东平台的数据为研究提供了丰富的实证,包括市场增长、产品多样化、高端产品需求上升、科技产品的发展、购买时段、年龄分布、决策因素以及地域差异等。报告指出,健康意识和
- ASM系列六 利用TreeApi 添加和移除类成员
lijingyao8206
jvm动态代理ASM字节码技术TreeAPI
同生成的做法一样,添加和移除类成员只要去修改fields和methods中的元素即可。这里我们拿一个简单的类做例子,下面这个Task类,我们来移除isNeedRemove方法,并且添加一个int 类型的addedField属性。
package asm.core;
/**
* Created by yunshen.ljy on 2015/6/
- Springmvc-权限设计
bee1314
springWebjsp
万丈高楼平地起。
权限管理对于管理系统而言已经是标配中的标配了吧,对于我等俗人更是不能免俗。同时就目前的项目状况而言,我们还不需要那么高大上的开源的解决方案,如Spring Security,Shiro。小伙伴一致决定我们还是从基本的功能迭代起来吧。
目标:
1.实现权限的管理(CRUD)
2.实现部门管理 (CRUD)
3.实现人员的管理 (CRUD)
4.实现部门和权限
- 算法竞赛入门经典(第二版)第2章习题
CrazyMizzz
c算法
2.4.1 输出技巧
#include <stdio.h>
int
main()
{
int i, n;
scanf("%d", &n);
for (i = 1; i <= n; i++)
printf("%d\n", i);
return 0;
}
习题2-2 水仙花数(daffodil
- struts2中jsp自动跳转到Action
麦田的设计者
jspwebxmlstruts2自动跳转
1、在struts2的开发中,经常需要用户点击网页后就直接跳转到一个Action,执行Action里面的方法,利用mvc分层思想执行相应操作在界面上得到动态数据。毕竟用户不可能在地址栏里输入一个Action(不是专业人士)
2、<jsp:forward page="xxx.action" /> ,这个标签可以实现跳转,page的路径是相对地址,不同与jsp和j
- php 操作webservice实例
IT独行者
PHPwebservice
首先大家要简单了解了何谓webservice,接下来就做两个非常简单的例子,webservice还是逃不开server端与client端。我测试的环境为:apache2.2.11 php5.2.10做这个测试之前,要确认你的php配置文件中已经将soap扩展打开,即extension=php_soap.dll;
OK 现在我们来体验webservice
//server端 serve
- Windows下使用Vagrant安装linux系统
_wy_
windowsvagrant
准备工作:
下载安装 VirtualBox :https://www.virtualbox.org/
下载安装 Vagrant :http://www.vagrantup.com/
下载需要使用的 box :
官方提供的范例:http://files.vagrantup.com/precise32.box
还可以在 http://www.vagrantbox.es/
- 更改linux的文件拥有者及用户组(chown和chgrp)
无量
clinuxchgrpchown
本文(转)
http://blog.163.com/yanenshun@126/blog/static/128388169201203011157308/
http://ydlmlh.iteye.com/blog/1435157
一、基本使用:
使用chown命令可以修改文件或目录所属的用户:
命令
- linux下抓包工具
矮蛋蛋
linux
原文地址:
http://blog.chinaunix.net/uid-23670869-id-2610683.html
tcpdump -nn -vv -X udp port 8888
上面命令是抓取udp包、端口为8888
netstat -tln 命令是用来查看linux的端口使用情况
13 . 列出所有的网络连接
lsof -i
14. 列出所有tcp 网络连接信息
l
- 我觉得mybatis是垃圾!:“每一个用mybatis的男纸,你伤不起”
alafqq
mybatis
最近看了
每一个用mybatis的男纸,你伤不起
原文地址 :http://www.iteye.com/topic/1073938
发表一下个人看法。欢迎大神拍砖;
个人一直使用的是Ibatis框架,公司对其进行过小小的改良;
最近换了公司,要使用新的框架。听说mybatis不错;就对其进行了部分的研究;
发现多了一个mapper层;个人感觉就是个dao;
- 解决java数据交换之谜
百合不是茶
数据交换
交换两个数字的方法有以下三种 ,其中第一种最常用
/*
输出最小的一个数
*/
public class jiaohuan1 {
public static void main(String[] args) {
int a =4;
int b = 3;
if(a<b){
// 第一种交换方式
int tmep =
- 渐变显示
bijian1013
JavaScript
<style type="text/css">
#wxf {
FILTER: progid:DXImageTransform.Microsoft.Gradient(GradientType=0, StartColorStr=#ffffff, EndColorStr=#97FF98);
height: 25px;
}
</style>
- 探索JUnit4扩展:断言语法assertThat
bijian1013
java单元测试assertThat
一.概述
JUnit 设计的目的就是有效地抓住编程人员写代码的意图,然后快速检查他们的代码是否与他们的意图相匹配。 JUnit 发展至今,版本不停的翻新,但是所有版本都一致致力于解决一个问题,那就是如何发现编程人员的代码意图,并且如何使得编程人员更加容易地表达他们的代码意图。JUnit 4.4 也是为了如何能够
- 【Gson三】Gson解析{"data":{"IM":["MSN","QQ","Gtalk"]}}
bit1129
gson
如何把如下简单的JSON字符串反序列化为Java的POJO对象?
{"data":{"IM":["MSN","QQ","Gtalk"]}}
下面的POJO类Model无法完成正确的解析:
import com.google.gson.Gson;
- 【Kafka九】Kafka High Level API vs. Low Level API
bit1129
kafka
1. Kafka提供了两种Consumer API
High Level Consumer API
Low Level Consumer API(Kafka诡异的称之为Simple Consumer API,实际上非常复杂)
在选用哪种Consumer API时,首先要弄清楚这两种API的工作原理,能做什么不能做什么,能做的话怎么做的以及用的时候,有哪些可能的问题
- 在nginx中集成lua脚本:添加自定义Http头,封IP等
ronin47
nginx lua
Lua是一个可以嵌入到Nginx配置文件中的动态脚本语言,从而可以在Nginx请求处理的任何阶段执行各种Lua代码。刚开始我们只是用Lua 把请求路由到后端服务器,但是它对我们架构的作用超出了我们的预期。下面就讲讲我们所做的工作。 强制搜索引擎只索引mixlr.com
Google把子域名当作完全独立的网站,我们不希望爬虫抓取子域名的页面,降低我们的Page rank。
location /{
- java-归并排序
bylijinnan
java
import java.util.Arrays;
public class MergeSort {
public static void main(String[] args) {
int[] a={20,1,3,8,5,9,4,25};
mergeSort(a,0,a.length-1);
System.out.println(Arrays.to
- Netty源码学习-CompositeChannelBuffer
bylijinnan
javanetty
CompositeChannelBuffer体现了Netty的“Transparent Zero Copy”
查看API(
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/buffer/package-summary.html#package_description)
可以看到,所谓“Transparent Zero Copy”是通
- Android中给Activity添加返回键
hotsunshine
Activity
// this need android:minSdkVersion="11"
getActionBar().setDisplayHomeAsUpEnabled(true);
@Override
public boolean onOptionsItemSelected(MenuItem item) {
- 静态页面传参
ctrain
静态
$(document).ready(function () {
var request = {
QueryString :
function (val) {
var uri = window.location.search;
var re = new RegExp("" + val + "=([^&?]*)", &
- Windows中查找某个目录下的所有文件中包含某个字符串的命令
daizj
windows查找某个目录下的所有文件包含某个字符串
findstr可以完成这个工作。
[html]
view plain
copy
>findstr /s /i "string" *.*
上面的命令表示,当前目录以及当前目录的所有子目录下的所有文件中查找"string&qu
- 改善程序代码质量的一些技巧
dcj3sjt126com
编程PHP重构
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。让我们看一些基本的编程技巧: 尽量保持方法简短 尽管很多人都遵
- SharedPreferences对数据的存储
dcj3sjt126com
SharedPreferences简介: &nbs
- linux复习笔记之bash shell (2) bash基础
eksliang
bashbash shell
转载请出自出处:
http://eksliang.iteye.com/blog/2104329
1.影响显示结果的语系变量(locale)
1.1locale这个命令就是查看当前系统支持多少种语系,命令使用如下:
[root@localhost shell]# locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
- Android零碎知识总结
gqdy365
android
1、CopyOnWriteArrayList add(E) 和remove(int index)都是对新的数组进行修改和新增。所以在多线程操作时不会出现java.util.ConcurrentModificationException错误。
所以最后得出结论:CopyOnWriteArrayList适合使用在读操作远远大于写操作的场景里,比如缓存。发生修改时候做copy,新老版本分离,保证读的高
- HoverTree.Model.ArticleSelect类的作用
hvt
Web.netC#hovertreeasp.net
ArticleSelect类在命名空间HoverTree.Model中可以认为是文章查询条件类,用于存放查询文章时的条件,例如HvtId就是文章的id。HvtIsShow就是文章的显示属性,当为-1是,该条件不产生作用,当为0时,查询不公开显示的文章,当为1时查询公开显示的文章。HvtIsHome则为是否在首页显示。HoverTree系统源码完全开放,开发环境为Visual Studio 2013
- PHP 判断是否使用代理 PHP Proxy Detector
天梯梦
proxy
1. php 类
I found this class looking for something else actually but I remembered I needed some while ago something similar and I never found one. I'm sure it will help a lot of developers who try to
- apache的math库中的回归——regression(翻译)
lvdccyb
Mathapache
这个Math库,虽然不向weka那样专业的ML库,但是用户友好,易用。
多元线性回归,协方差和相关性(皮尔逊和斯皮尔曼),分布测试(假设检验,t,卡方,G),统计。
数学库中还包含,Cholesky,LU,SVD,QR,特征根分解,真不错。
基本覆盖了:线代,统计,矩阵,
最优化理论
曲线拟合
常微分方程
遗传算法(GA),
还有3维的运算。。。
- 基础数据结构和算法十三:Undirected Graphs (2)
sunwinner
Algorithm
Design pattern for graph processing.
Since we consider a large number of graph-processing algorithms, our initial design goal is to decouple our implementations from the graph representation
- 云计算平台最重要的五项技术
sumapp
云计算云平台智城云
云计算平台最重要的五项技术
1、云服务器
云服务器提供简单高效,处理能力可弹性伸缩的计算服务,支持国内领先的云计算技术和大规模分布存储技术,使您的系统更稳定、数据更安全、传输更快速、部署更灵活。
特性
机型丰富
通过高性能服务器虚拟化为云服务器,提供丰富配置类型虚拟机,极大简化数据存储、数据库搭建、web服务器搭建等工作;
仅需要几分钟,根据CP
- 《京东技术解密》有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的12月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
12月试读活动回顾:
http://webmaster.iteye.com/blog/2164754
本次技术图书试读活动获奖名单及相应作品如下:
一等奖(两名)
Microhardest:http://microhardest.ite