csv分区写入mysql_将CSV文件写入到MySQL中(用Pandas库实现MySQL数据库的读写)

转载自公众号:python-china

转载自公众号:python-china

本次分享将介绍如何在Python中使用Pandas库实现MySQL数据库的读写。首先我们需要了解点ORM方面的知识。

ORM技术

对象关系映射技术,即ORM(Object-Relational Mapping)技术,指的是把关系数据库的表结构映射到对象上,通过使用描述对象和数据库之间映射的元数据,将程序中的对象自动持久化到关系数据库中。

在Python中,最有名的ORM框架是SQLAlchemy。Java中典型的ORM中间件有: Hibernate, ibatis, speedframework。

SQLAlchemy

SQLAlchemy是Python编程语言下的一款开源软件。提供了SQL工具包及对象关系映射(ORM)工具,使用MIT许可证发行。

可以使用pip命令安装SQLAlchemy模块:

pip install sqlalchemy

SQLAlchemy模块提供了create_engine()函数用来初始化数据库连接,SQLAlchemy用一个字符串表示连接信息:

‘数据库类型+数据库驱动名称://用户名:口令@机器地址:端口号/数据库名’

Pandas读写MySQL数据库

我们需要以下三个库来实现Pandas读写MySQL数据库:

pandas

sqlalchemy

pymysql

其中,pandas模块提供了read_sql_query()函数实现了对数据库的查询,to_sql()函数实现了对数据库的写入,并不需要实现新建MySQL数据表。sqlalchemy模块实现了与不同数据库的连接,而pymysql模块则使得Python能够操作MySQL数据库。

我们将使用MySQL数据库中的mydb数据库以及employee表,内容如下:

csv分区写入mysql_将CSV文件写入到MySQL中(用Pandas库实现MySQL数据库的读写)_第1张图片

image

下面将介绍一个简单的例子来展示如何在pandas中实现对MySQL数据库的读写:

# -*- coding: utf-8 -*-# 导入必要模块import pandas as pdfrom sqlalchemy import create_engine# 初始化数据库连接,使用pymysql模块# MySQL的用户:root, 密码:147369, 端口:3306,数据库:mydbengine = create_engine('mysql+pymysql://root:147369@localhost:3306/mydb')# 查询语句,选出employee表中的所有数据sql = ''' select * from employee; '''# read_sql_query的两个参数: sql语句, 数据库连接df = pd.read_sql_query(sql, engine)# 输出employee表的查询结果print(df)# 新建pandas中的DataFrame, 只有id,num两列df = pd.DataFrame({'id':[1,2,3,4],'num':[12,34,56,89]})# 将新建的DataFrame储存为MySQL中的数据表,不储存index列df.to_sql('mydf', engine, index= False)

程序的运行结果如下:

csv分区写入mysql_将CSV文件写入到MySQL中(用Pandas库实现MySQL数据库的读写)_第2张图片

image

在MySQL中查看mydf表格:

csv分区写入mysql_将CSV文件写入到MySQL中(用Pandas库实现MySQL数据库的读写)_第3张图片

image

这说明我们确实将pandas中新建的DataFrame写入到了MySQL中!

将CSV文件写入到MySQL中

以上的例子实现了使用Pandas库实现MySQL数据库的读写,我们将再介绍一个实例:将CSV文件写入到MySQL中,示例的mpg.CSV文件前10行如下:

csv分区写入mysql_将CSV文件写入到MySQL中(用Pandas库实现MySQL数据库的读写)_第4张图片

image

示例的Python代码如下:

# -*- coding: utf-8 -*-# 导入必要模块import pandas as pdfrom sqlalchemy import create_engine# 初始化数据库连接,使用pymysql模块engine = create_engine('mysql+pymysql://root:147369@localhost:3306/mydb')# 读取本地CSV文件df = pd.read_csv("E://mpg.csv", sep=',')# 将新建的DataFrame储存为MySQL中的数据表,不储存index列df.to_sql('mpg', engine, index= False)print("Write to MySQL successfully!")

在MySQL中查看mpg表格:

csv分区写入mysql_将CSV文件写入到MySQL中(用Pandas库实现MySQL数据库的读写)_第5张图片

image

仅仅5句Python代码就实现了将CSV文件写入到MySQL中,这无疑是简单、方便、迅速、高效的!

文章转载于:https://www.jianshu.com/p/7cb562494d50

原著是一个有趣的人,若有侵权,请通知删除

你可能感兴趣的:(csv分区写入mysql)