机器学习数据获取、处理及图像增强教程及代码实现

搭建机器学习的环境只是机器学习的第一步(搭建环境具体请移步:https://blog.csdn.net/yeahxbf/article/details/124617009),机器学习的关键在于数据的收集与处理,下面我以基于yolov5的图像识别机器学习为例来介绍数据是如何采集并处理的。

1.数据的收集
图像学习最重要的数据就是图片,比较容易获取图像数据的方式就是使用python爬虫程序,下面附上代码。

import requests
import re
import os
import time
headers = {'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.125 Safari/537.36'}
name = input('您要爬取什么图片')
num = 0
num_1 = 0
num_2 = 0
x = input('您要爬取几张呢?,输入1等于60张图片。')
list_1 = []
for i in range(int(x)):
    name_1 = os.getcwd()
    name_2 = os.path.join(name_1,f"{name}")
    url = 'https://image.baidu.com/search/flip?tn=baiduimage&ie=utf-8&word='+name+'&pn='+str(i*30)
    res = requests.get(url,headers=headers)
    htlm_1 = res.content.decode()
    a = re.findall('"objURL":"(.*?)",',htlm_1)
    if not os.path.exists(name_2):
        os.makedirs(name_2)
    for b in a:
        try:
            b_1 = re.findall('https:(.*?)&',b)
            b_2 = ''.join(b_1)
            if b_2 not in list_1:
                num = num +1
                img = requests.get(b)
                f = open(os.path.join(name_1,f"{name}",name+str(num)+'.jpg'),'ab')
                print('---------正在下载第'+str(num)+'张图片----------')
                f.write(img.content)
                f.close()
                list_1.append(b_2)
            elif b_2 in list_1:
                num_1 = num_1 + 1 
                continue
        except Exception as e:
            print('---------第'+str(num)+'张图片无法下载----------')
            num_2 = num_2 +1
            continue
print('下载完成,总共下载{}张,成功下载:{}张,重复下载:{}张,下载失败:{}张'.format(num+num_1+num_2,num,num_1,num_2))

PS:这里可以根据自己的需求将url对应的网址进行更换。

2.数据的处理
我们收集到的数据有很多是无用的,或者错误的,我们在打标前首先要进行一下初步的过滤,即将无用的数据先自己删除,但是我们不可能保证完全删除干净,所以在打标时仍然会出现有的图片不符合要求,进而没有打标的情况。这会导致图片的数量与标签的数量不一致,不一一对应。为解决这种情况,可以使用以下的代码:

import os

train_images_path_old = r'D:\VOC2007\JPEGImages'
train_images_path_new = r'D:\dataup\img'
train_labels_path_old = r'D:\VOC2007\Annotations'
train_labels_path_new = r'D:\dataup\xml'

os.chdir(train_images_path_old)
os.chdir(train_labels_path_old)
list_images = os.listdir(train_images_path_old)
list_labels = os.listdir(train_labels_path_old)
images_number = 0  # 图片后面加的序号
labels_number = 0  # 图片后面加的序号,用一个就行
for images_list_num in range(0, len(list_images)):  # 先遍历图片序号,再检测标签需要是否与之对应,之后改成一样的名字

    for labels_list_num in range(0, len(list_labels)):
        images_old_name = list_images[images_list_num]
        labels_old_name = list_labels[labels_list_num]
        if (images_old_name[:-3] == labels_old_name[:-3]):
            print("图片文件与标签已经对应,对应的序号为:%d" % (images_number))
            # old_name = list_images[images_list_num]
            images_number = images_number + 1
            new_name = 'new' + '-' + str(images_number)
            try:
                os.renames(str(train_images_path_old) + '\\' + str(images_old_name),  # 存图片
                           str(train_images_path_new) + '\\' + str(new_name) + '.jpg')
                os.renames(str(train_labels_path_old) + '\\' + str(labels_old_name),  # 存标签
                           str(train_labels_path_new) + '\\' + str(new_name) + '.xml')
            except (FileNotFoundError):
                print("目录或文件不存在")
        else:
            print("图片与标签不对应")
print("所有文件均改名完毕")

PS:把图片和标签的路径改为自己的,然后运行即可。运行完后没有图片对应的标签和没有标签对应的图片会被筛出,标签和图片一一对应的会被转移到新的目标文件夹,并重新命名。

3.数据的增强
我们将数据筛选完毕后,会发现我们的数据集可能不够庞大(尤其在面对一些稀有的数据时),这时我们可以采取图像增强的方式,将一张图片通过速度,亮度,添加噪声等方式进行处理,形成多张照片并在新生成的照片上保留原来的标签。这样数据就可以成倍扩大。代码如下:

# -*- coding=utf-8 -*-

# 包括:
#     1. 裁剪(需改变bbox)
#     2. 平移(需改变bbox)
#     3. 改变亮度
#     4. 加噪声
#     5. 旋转角度(需要改变bbox)
#     6. 镜像(需要改变bbox)
#     7. cutout
# 注意:
#     random.seed(),相同的seed,产生的随机数是一样的!!

import sys
#
# ros_path = '/opt/ros/kinetic/lib/python2.7/dist-packages'
#
# if ros_path in sys.path:
#     sys.path.remove(ros_path)

import cv2
import time
import random
import os
import math
import numpy as np
from skimage.util import random_noise
from skimage import exposure
# -*- coding=utf-8 -*-
import xml.etree.ElementTree as ET

# 从xml文件中提取bounding box信息, 格式为[[x_min, y_min, x_max, y_max, name]]
def parse_xml(xml_path):
    '''
    输入:
        xml_path: xml的文件路径
    输出:
        从xml文件中提取bounding box信息, 格式为[[x_min, y_min, x_max, y_max, name]]
    '''
    tree = ET.parse(xml_path)
    root = tree.getroot()
    objs = root.findall('object')
    coords = list()
    for ix, obj in enumerate(objs):
        name = obj.find('name').text
        box = obj.find('bndbox')
        x_min = int(float(box[0].text))
        y_min = int(float(box[1].text))
        x_max = int(float(box[2].text))
        y_max = int(float(box[3].text))
        coords.append([x_min, y_min, x_max, y_max, name])
    return coords

import os
from lxml.etree import Element, SubElement, tostring
from PIL import Image

# 保存xml文件函数的核心实现,输入为图片名称image_name,分类category(一个列表,元素与bbox对应),bbox(一个列表,与分类对应),保存路径save_dir ,通道数channel
def save_xml(image_name, category, bbox, file_dir, save_dir, channel=3):
    file_path = file_dir
    print(file_path)
    img = Image.open(os.path.join(file_path, image_name))
    width = img.size[0]
    height = img.size[1]

    node_root = Element('annotation')

    node_folder = SubElement(node_root, 'folder')
    node_folder.text = 'VOC2007'

    node_filename = SubElement(node_root, 'filename')
    node_filename.text = image_name

    node_size = SubElement(node_root, 'size')
    node_width = SubElement(node_size, 'width')
    node_width.text = '%s' % width

    node_height = SubElement(node_size, 'height')
    node_height.text = '%s' % height

    node_depth = SubElement(node_size, 'depth')
    node_depth.text = '%s' % channel

    for i in range(len(bbox)):
        left, top, right, bottom = int(bbox[i][0]), int(bbox[i][1]), int(bbox[i][2]), int(bbox[i][3])

        node_object = SubElement(node_root, 'object')
        node_name = SubElement(node_object, 'name')
        node_name.text = category[i]
        node_difficult = SubElement(node_object, 'difficult')
        node_difficult.text = '0'
        node_bndbox = SubElement(node_object, 'bndbox')
        node_xmin = SubElement(node_bndbox, 'xmin')
        node_xmin.text = '%s' % left
        node_ymin = SubElement(node_bndbox, 'ymin')
        node_ymin.text = '%s' % top
        node_xmax = SubElement(node_bndbox, 'xmax')
        node_xmax.text = '%s' % right
        node_ymax = SubElement(node_bndbox, 'ymax')
        node_ymax.text = '%s' % bottom

    xml = tostring(node_root, pretty_print=True)

    save_xml = os.path.join(save_dir, image_name.replace('jpg', 'xml'))
    with open(save_xml, 'wb') as f:
        f.write(xml)

    return

# 显示带标签显示的图片
def show_pic(img, bboxes=None, labels=None):
    '''
    输入:
        img:图像array
        bboxes:图像的所有boudning box list, 格式为[[x_min, y_min, x_max, y_max]....]
        names:每个box对应的名称
    '''
    #     cv2.imwrite('./1.jpg', img)
    #     img = cv2.imread('./1.jpg')
    img = img / 255
    for i in range(len(bboxes)):
        bbox = bboxes[i]
        x_min = bbox[0]
        y_min = bbox[1]
        x_max = bbox[2]
        y_max = bbox[3]
        cv2.rectangle(img, (int(x_min), int(y_min)), (int(x_max), int(y_max)), (0, 255, 0), 3)
        cv2.putText(img, labels[i], (int(x_min), int(y_min)), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 2)
    cv2.namedWindow('pic', 0)  # 1表示原图
    cv2.moveWindow('pic', 0, 0)
    cv2.resizeWindow('pic', 1200, 800)  # 可视化的图片大小
    cv2.imshow('pic', img)
    if cv2.waitKey(1) == ord('q'):
        cv2.destroyAllWindows()
        sys.exit()

# 图像均为cv2读取
class DataAugmentForObjectDetection():
    def __init__(self, rotation_rate=0.5, max_rotation_angle=30,
                 crop_rate=0.5, shift_rate=0.5, change_light_rate=0.5,
                 add_noise_rate=0.5, flip_rate=0.5,
                 cutout_rate=0.5, cut_out_length=50, cut_out_holes=1, cut_out_threshold=0.5, hsv_rate=0.5):
        self.rotation_rate = rotation_rate
        self.max_rotation_angle = max_rotation_angle
        self.crop_rate = crop_rate
        self.shift_rate = shift_rate
        self.change_light_rate = change_light_rate
        self.add_noise_rate = add_noise_rate
        self.flip_rate = flip_rate
        self.cutout_rate = cutout_rate
        self.augment_hsv_rate = hsv_rate
        self.cut_out_length = cut_out_length
        self.cut_out_holes = cut_out_holes
        self.cut_out_threshold = cut_out_threshold

    # 加噪声
    def _addNoise(self, img):
        '''
        输入:
            img:图像array
        输出:
            加噪声后的图像array,由于输出的像素是在[0,1]之间,所以得乘以255
        '''
        # random.seed(int(time.time()))
        # return random_noise(img, mode='gaussian', seed=int(time.time()), clip=True)*255
        return random_noise(img, mode='gaussian', clip=True) * 255

    # 调整亮度
    def _changeLight(self, img):
        # random.seed(int(time.time()))
        flag = random.uniform(0.5, 1.5)  # flag>1为调暗,小于1为调亮
        return exposure.adjust_gamma(img, flag)

    def _augment_hsv(self, img, hgain=0.5, sgain=0.5, vgain=0.5):
        r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1  # random gains
        hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
        dtype = img.dtype  # uint8

        x = np.arange(0, 256, dtype=r.dtype)
        lut_hue = ((x * r[0]) % 180).astype(dtype)
        lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
        lut_val = np.clip(x * r[2], 0, 255).astype(dtype)

        img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val)))
        return cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img)  # no return needed

    # cutout
    def _cutout(self, img, bboxes, length=100, n_holes=1, threshold=0.5):
        '''
        原版本:https://github.com/uoguelph-mlrg/Cutout/blob/master/util/cutout.py
        Randomly mask out one or more patches from an image.
        Args:
            img : a 3D numpy array,(h,w,c)
            bboxes : 框的坐标
            n_holes (int): Number of patches to cut out of each image.
            length (int): The length (in pixels) of each square patch.
        '''

        def cal_iou(boxA, boxB):
            '''
            boxA, boxB为两个框,返回iou
            boxB为bouding box
            '''

            # determine the (x, y)-coordinates of the intersection rectangle
            xA = max(boxA[0], boxB[0])
            yA = max(boxA[1], boxB[1])
            xB = min(boxA[2], boxB[2])
            yB = min(boxA[3], boxB[3])

            if xB <= xA or yB <= yA:
                return 0.0

            # compute the area of intersection rectangle
            interArea = (xB - xA + 1) * (yB - yA + 1)

            # compute the area of both the prediction and ground-truth
            # rectangles
            boxAArea = (boxA[2] - boxA[0] + 1) * (boxA[3] - boxA[1] + 1)
            boxBArea = (boxB[2] - boxB[0] + 1) * (boxB[3] - boxB[1] + 1)

            # compute the intersection over union by taking the intersection
            # area and dividing it by the sum of prediction + ground-truth
            # areas - the interesection area
            # iou = interArea / float(boxAArea + boxBArea - interArea)
            iou = interArea / float(boxBArea)

            # return the intersection over union value
            return iou

        # 得到h和w
        if img.ndim == 3:
            h, w, c = img.shape
        else:
            _, h, w, c = img.shape

        mask = np.ones((h, w, c), np.float32)

        for n in range(n_holes):

            chongdie = True  # 看切割的区域是否与box重叠太多

            while chongdie:
                y = np.random.randint(h)
                x = np.random.randint(w)

                y1 = np.clip(y - length // 2, 0,
                             h)  # numpy.clip(a, a_min, a_max, out=None), clip这个函数将将数组中的元素限制在a_min, a_max之间,大于a_max的就使得它等于 a_max,小于a_min,的就使得它等于a_min
                y2 = np.clip(y + length // 2, 0, h)
                x1 = np.clip(x - length // 2, 0, w)
                x2 = np.clip(x + length // 2, 0, w)

                chongdie = False
                for box in bboxes:
                    if cal_iou([x1, y1, x2, y2], box) > threshold:
                        chongdie = True
                        break

            mask[y1: y2, x1: x2, :] = 0.

        # mask = np.expand_dims(mask, axis=0)
        img = img * mask

        return img

    # 旋转
    def _rotate_img_bbox(self, img, bboxes, angle=5, scale=1.):
        '''
        参考:https://blog.csdn.net/u014540717/article/details/53301195crop_rate
        输入:
            img:图像array,(h,w,c)
            bboxes:该图像包含的所有boundingboxs,一个list,每个元素为[x_min, y_min, x_max, y_max],要确保是数值
            angle:旋转角度
            scale:默认1
        输出:
            rot_img:旋转后的图像array
            rot_bboxes:旋转后的boundingbox坐标list
        '''
        # ---------------------- 旋转图像 ----------------------
        w = img.shape[1]
        h = img.shape[0]
        # 角度变弧度
        rangle = np.deg2rad(angle)  # angle in radians
        # now calculate new image width and height
        nw = (abs(np.sin(rangle) * h) + abs(np.cos(rangle) * w)) * scale
        nh = (abs(np.cos(rangle) * h) + abs(np.sin(rangle) * w)) * scale
        # ask OpenCV for the rotation matrix
        rot_mat = cv2.getRotationMatrix2D((nw * 0.5, nh * 0.5), angle, scale)
        # calculate the move from the old center to the new center combined
        # with the rotation
        rot_move = np.dot(rot_mat, np.array([(nw - w) * 0.5, (nh - h) * 0.5, 0]))
        # the move only affects the translation, so update the translation
        # part of the transform
        rot_mat[0, 2] += rot_move[0]
        rot_mat[1, 2] += rot_move[1]
        # 仿射变换
        rot_img = cv2.warpAffine(img, rot_mat, (int(math.ceil(nw)), int(math.ceil(nh))), flags=cv2.INTER_LANCZOS4)

        # ---------------------- 矫正bbox坐标 ----------------------
        # rot_mat是最终的旋转矩阵
        # 获取原始bbox的四个中点,然后将这四个点转换到旋转后的坐标系下
        rot_bboxes = list()
        for bbox in bboxes:
            xmin = bbox[0]
            ymin = bbox[1]
            xmax = bbox[2]
            ymax = bbox[3]
            point1 = np.dot(rot_mat, np.array([(xmin + xmax) / 2, ymin, 1]))
            point2 = np.dot(rot_mat, np.array([xmax, (ymin + ymax) / 2, 1]))
            point3 = np.dot(rot_mat, np.array([(xmin + xmax) / 2, ymax, 1]))
            point4 = np.dot(rot_mat, np.array([xmin, (ymin + ymax) / 2, 1]))
            # 合并np.array
            concat = np.vstack((point1, point2, point3, point4))
            # 改变array类型
            concat = concat.astype(np.int32)
            # 得到旋转后的坐标
            rx, ry, rw, rh = cv2.boundingRect(concat)
            rx_min = rx
            ry_min = ry
            rx_max = rx + rw
            ry_max = ry + rh
            # 加入list中
            rot_bboxes.append([rx_min, ry_min, rx_max, ry_max])

        return rot_img, rot_bboxes

    # 裁剪
    def _crop_img_bboxes(self, img, bboxes):
        '''
        裁剪后的图片要包含所有的框
        输入:
            img:图像array
            bboxes:该图像包含的所有boundingboxs,一个list,每个元素为[x_min, y_min, x_max, y_max],要确保是数值
        输出:
            crop_img:裁剪后的图像array
            crop_bboxes:裁剪后的bounding box的坐标list
        '''
        # ---------------------- 裁剪图像 ----------------------
        w = img.shape[1]
        h = img.shape[0]
        x_min = w  # 裁剪后的包含所有目标框的最小的框
        x_max = 0
        y_min = h
        y_max = 0
        for bbox in bboxes:
            x_min = min(x_min, bbox[0])
            y_min = min(y_min, bbox[1])
            x_max = max(x_max, bbox[2])
            y_max = max(y_max, bbox[3])

        d_to_left = x_min  # 包含所有目标框的最小框到左边的距离
        d_to_right = w - x_max  # 包含所有目标框的最小框到右边的距离
        d_to_top = y_min  # 包含所有目标框的最小框到顶端的距离
        d_to_bottom = h - y_max  # 包含所有目标框的最小框到底部的距离

        # 随机扩展这个最小框
        crop_x_min = int(x_min - random.uniform(0, d_to_left))
        crop_y_min = int(y_min - random.uniform(0, d_to_top))
        crop_x_max = int(x_max + random.uniform(0, d_to_right))
        crop_y_max = int(y_max + random.uniform(0, d_to_bottom))

        # 随机扩展这个最小框 , 防止别裁的太小
        # crop_x_min = int(x_min - random.uniform(d_to_left//2, d_to_left))
        # crop_y_min = int(y_min - random.uniform(d_to_top//2, d_to_top))
        # crop_x_max = int(x_max + random.uniform(d_to_right//2, d_to_right))
        # crop_y_max = int(y_max + random.uniform(d_to_bottom//2, d_to_bottom))

        # 确保不要越界
        crop_x_min = max(0, crop_x_min)
        crop_y_min = max(0, crop_y_min)
        crop_x_max = min(w, crop_x_max)
        crop_y_max = min(h, crop_y_max)

        crop_img = img[crop_y_min:crop_y_max, crop_x_min:crop_x_max]

        # ---------------------- 裁剪boundingbox ----------------------
        # 裁剪后的boundingbox坐标计算
        crop_bboxes = list()
        for bbox in bboxes:
            crop_bboxes.append([bbox[0] - crop_x_min, bbox[1] - crop_y_min, bbox[2] - crop_x_min, bbox[3] - crop_y_min])

        return crop_img, crop_bboxes

    # 平移
    def _shift_pic_bboxes(self, img, bboxes):
        '''
        参考:https://blog.csdn.net/sty945/article/details/79387054
        平移后的图片要包含所有的框
        输入:
            img:图像array
            bboxes:该图像包含的所有boundingboxs,一个list,每个元素为[x_min, y_min, x_max, y_max],要确保是数值
        输出:
            shift_img:平移后的图像array
            shift_bboxes:平移后的bounding box的坐标list
        '''
        # ---------------------- 平移图像 ----------------------
        w = img.shape[1]
        h = img.shape[0]
        x_min = w  # 裁剪后的包含所有目标框的最小的框
        x_max = 0
        y_min = h
        y_max = 0
        for bbox in bboxes:
            x_min = min(x_min, bbox[0])
            y_min = min(y_min, bbox[1])
            x_max = max(x_max, bbox[2])
            y_max = max(y_max, bbox[3])

        d_to_left = x_min  # 包含所有目标框的最大左移动距离
        d_to_right = w - x_max  # 包含所有目标框的最大右移动距离
        d_to_top = y_min  # 包含所有目标框的最大上移动距离
        d_to_bottom = h - y_max  # 包含所有目标框的最大下移动距离

        x = random.uniform(-(d_to_left - 1) / 3, (d_to_right - 1) / 3)
        y = random.uniform(-(d_to_top - 1) / 3, (d_to_bottom - 1) / 3)

        M = np.float32([[1, 0, x], [0, 1, y]])
        # x为向左或右移动的像素值,正为向右负为向左; y为向上或者向下移动的像素值,正为向下负为向上
        try:
            shift_img = cv2.warpAffine(img, M, (img.shape[1], img.shape[0]))
        except Exception as e:
            print("error")

        # ---------------------- 平移boundingbox ----------------------
        shift_bboxes = list()
        for bbox in bboxes:
            shift_bboxes.append([bbox[0] + x, bbox[1] + y, bbox[2] + x, bbox[3] + y])

        return shift_img, shift_bboxes

    # 镜像
    def _filp_pic_bboxes(self, img, bboxes):
        '''
            参考:https://blog.csdn.net/jningwei/article/details/78753607
            平移后的图片要包含所有的框
            输入:
                img:图像array
                bboxes:该图像包含的所有boundingboxs,一个list,每个元素为[x_min, y_min, x_max, y_max],要确保是数值
            输出:
                flip_img:平移后的图像array
                flip_bboxes:平移后的bounding box的坐标list
        '''
        # ---------------------- 翻转图像 ----------------------
        import copy
        flip_img = copy.deepcopy(img)
        #         if random.random() < 0.5:    #0.5的概率水平翻转,0.5的概率垂直翻转
        horizon = True
        #         else:
        #             horizon = False
        h, w, _ = img.shape
        if horizon:  # 水平翻转
            flip_img = cv2.flip(flip_img, 1)  # 1是水平,0是垂直,-1是水平垂直
        else:
            flip_img = cv2.flip(flip_img, 0)

        # ---------------------- 调整boundingbox ----------------------
        flip_bboxes = list()
        for box in bboxes:
            x_min = box[0]
            y_min = box[1]
            x_max = box[2]
            y_max = box[3]
            if horizon:
                flip_bboxes.append([w - x_max, y_min, w - x_min, y_max])
            else:
                flip_bboxes.append([x_min, h - y_max, x_max, h - y_min])

        return flip_img, flip_bboxes

    def dataAugment(self, img, bboxes):
        '''
        图像增强:支持增强方式:
        1、裁剪
        2、旋转
        3、平移
        4、亮度
        5、噪声
        6、hsv增强
        8、cutout
        9、上下左右翻转
        输入:
            img:图像array
            bboxes:该图像的所有框坐标
        输出:
            img:增强后的图像
            bboxes:增强后图片对应的box
        '''
        change_num = 0  # 改变的次数
        print('------')
        while change_num < 1:  # 默认至少有一种数据增强生效
            if random.random() < self.crop_rate:  # 裁剪
                print('裁剪')
                change_num += 1
                img, bboxes = self._crop_img_bboxes(img, bboxes)


            if random.random() < self.shift_rate:  # 平移
                print('平移')
                change_num += 1
                img, bboxes = self._shift_pic_bboxes(img, bboxes)

            if random.random() > self.augment_hsv_rate:  # 改变色度
                print('hsv')
                change_num += 1
                img = self._augment_hsv(img)

            if random.random() > self.change_light_rate:  # 改变亮度
                print("亮度")
                change_num += 1
                img = self._changeLight(img)

            if random.random() < self.add_noise_rate:  # 加噪声
                print('加噪声')
                change_num += 1
                img = self._addNoise(img)

            if random.random() < self.cutout_rate:  # cutout
                print('cutout')
                change_num += 1
                img = self._cutout(img, bboxes, length=self.cut_out_length, n_holes=self.cut_out_holes,
                                   threshold=self.cut_out_threshold)


            print('\n')

        # print('------')
        return img, bboxes

need_aug_num = 3  # TODO: 修改单张需要扩增的数据量 单张图片需要扩增的数量
dataAug = DataAugmentForObjectDetection()

source_pic_root_path = r'D:\py\VOC2007\VOC2007\JPEGImages'
source_xml_root_path = r'D:\py\VOC2007\VOC2007\Annotations'
img_save_path = r'D:\py\VOC2007\VOC2007\saveimg' # 新的图片文件
save_dir = r'D:\py\VOC2007\VOC2007\saveann' # 新的标注文件
num_img = 0

for parent, _, files in os.walk(source_pic_root_path):
    for file in files:
        num_img += 1
        cnt = 0
        while cnt < need_aug_num:
            pic_path = os.path.join(parent, file)
            xml_path = os.path.join(source_xml_root_path, file[:-4] + '.xml')
            coords = parse_xml(xml_path)  # 解析得到box信息,格式为[[x_min,y_min,x_max,y_max,name]]
            coordss = [coord[:4] for coord in coords]
            labels = [coord[4] for coord in coords]
            img = cv2.imread(pic_path)
            # show_pic(img, coordss, labels)  # 原图

            auged_img, auged_bboxes = dataAug.dataAugment(img, coordss)
            cnt += 1
            cv2.imwrite(img_save_path + '/' + file[:-4] + '_%d.jpg' % cnt, auged_img)
            save_xml(file[:-4] + '_%d.jpg' % cnt, labels, auged_bboxes, file_dir=img_save_path, save_dir=save_dir)
            # show_pic(auged_img, auged_bboxes, labels)  # 强化后的图
            cv2.waitKey(200)

        if num_img > 1702:#扩增的图像数量
            break
cv2.destroyAllWindows()

# 测试label是否正确
# import shutil
#
# need_aug_num = 1
#
# dataAug = DataAugmentForObjectDetection()
#
# source_pic_root_path = '/home/xbw/darknet_boat/darknet/scripts/VOCdevkit/VOC2007/add_990/990_add/'
# source_xml_root_path = '/home/xbw/darknet_boat/darknet/scripts/VOCdevkit/VOC2007/add_990/990_xml/'
#
# for parent, _, files in os.walk(source_pic_root_path):
#     for file in files:
#         cnt = 0
#         while cnt < need_aug_num:
#             pic_path = os.path.join(parent, file)
#             xml_path = os.path.join(source_xml_root_path, file[:-4]+'.xml')
#             coords = parse_xml(xml_path)        #解析得到box信息,格式为[[x_min,y_min,x_max,y_max,name]]
#             coordss = [coord[:4] for coord in coords]
#             labels = [coord[4] for coord in coords]
#             img = cv2.imread(pic_path)
#             show_pic(img, coordss,labels)    # 原图
#             cnt += 1
# cv2.destroyAllWindows()

PS1:使用图像增强一定要有机器学习的环境(主要是opencv),其次图的质量要高,不要有损坏,否则会报错!
PS2:该程序肯定是没问题的,如果你运行中报了错,只说明一个问题,你的数据集图片有损坏或者opencv不识别你的某张图。遇到这种情况,你就不要一次性将所有图片导入,分批次导入200张一组或500张一组(自己定),每次跑一半报错时,就去目标文件夹看,是到哪张图卡住了,把那张图删掉继续跑就可以。千万不要一次性全倒进去,因为那样即使报错也不能找到到底是哪张的问题。

希望大家都能顺利搞定自己的数据集!!!

你可能感兴趣的:(机器学习,python,人工智能)