欢迎来到本博客❤️❤️
博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
本文目录如下:
目录
1 概述
2 运行结果
3 Matlab代码实现
4 参考文献
在本文中,Slime-Mould-Algorithm(SMA)的性能得到了提高,这是一种当前的元启发式搜索算法。为了在SMA算法中更有效地对搜索过程生命周期过程进行建模,使用适应度-距离平衡(FDB)方法确定了指导搜索过程的候选解决方案。虽然SMA算法的性能被接受,但可以看出,由于应用FDB方法而开发的FDB-SMA算法的性能要好得多。CEC 2020 当前存在基准问题,用于测试开发的 FDB-SMA 算法的性能。从CEC 2020中选取的10个不同的无约束比较问题,将它们按30-50-100个维度排列,进行了设计。使用设计的比较问题进行实验研究,并用Friedman和Wilcoxon统计测试方法进行分析。根据分析结果,已经看到FDB-SMA变体在所有实验研究中都优于基本算法(SMA)。
部分代码:
% Max_iter: maximum iterations, N: populatoin size, Convergence_curve: Convergence curve
% To run SMA: [Destination_fitness,bestPositions,Convergence_curve]=SMA(N,Max_iter,lb,ub,dim,fobj)
%function [Destination_fitness,bestPositions,Convergence_curve]=sma(N,Max_iter,lb,ub,dim,fobj)
function[] = FDB_sma_case_1()
disp('SMA is now tackling your problem')
[N,dim,Max_iter ,lb,ub]=problem_terminate();
%fhd=cec20so;
% initialize position
bestPositions=zeros(1,dim);
Destination_fitness=inf;%change this to -inf for maximization problems
AllFitness = inf*ones(N,1);%record the fitness of all slime mold
weight = ones(N,dim);%fitness weight of each slime mold
%Initialize the set of random solutions
X=initialization(N,dim,ub,lb);
Convergence_curve=zeros(1,Max_iter);
it=1; %Number of iterations
lb=ones(1,dim).*lb; % lower boundary
ub=ones(1,dim).*ub; % upper boundary
z=0.03; % parameter
% Main loop
while it <= Max_iter
disp(it)
fdbindex = fitnessDistanceBalance( X, Destination_fitness );
%sort the fitness
for i=1:N
% Check if solutions go outside the search space and bring them back
Flag4ub=X(i,:)>ub;
Flag4lb=X(i,:)
X(i,:)=(X(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;
%AllFitness(i) = fobj(X(i,:));
AllFitness(i)=problem( X(i,:)' );
it=it+1;
end
[SmellOrder,SmellIndex] = sort(AllFitness); %Eq.(2.6)
worstFitness = SmellOrder(N);
bestFitness = SmellOrder(1);
S=bestFitness-worstFitness+eps; % plus eps to avoid denominator zero
%calculate the fitness weight of each slime mold if(rand<0.5) bestSolution=bestPositions; function Positions=initialization(SearchAgents_no,dim,ub,lb) Boundary_no= size(ub,2); % numnber of boundaries % If the boundaries of all variables are equal and user enter a signle % If each variable has a different lb and ub 部分理论来源于网络,如有侵权请联系删除。 [1]SUİÇMEZ, Ç., KAHRAMAN, H., YILMAZ, C., IŞIK, M. F., & CENGİZ, E. Improved Slime-Mould-Algorithm with Fitness Distance Balance-based Guiding Mechanism for Global Optimization Problems. Duzce University Journal of Science and Technology, 9(6), 40-54.
for i=1:N
for j=1:dim
if i<=(N/2) %Eq.(2.5)
weight(SmellIndex(i),j) = 1+rand()*log10((bestFitness-SmellOrder(i))/(S)+1);%fdb
else
weight(SmellIndex(i),j) = 1-rand()*log10((bestFitness-SmellOrder(i))/(S)+1);%fdb
end
end
end
%update the best fitness value and best position
if bestFitness < Destination_fitness
bestPositions=X(SmellIndex(1),:);
Destination_fitness = bestFitness;
end
a = atanh(-(it/Max_iter)+1); %Eq.(2.4)
b = 1-it/Max_iter;
% Update the Position of search agents
for i=1:N
if rand
else
if(rand<0.5)
p =tanh(abs(AllFitness(fdbindex)-Destination_fitness)); %Eq.(2.2)%fdb
else
p =tanh(abs(AllFitness(i)-Destination_fitness)); %Eq.(2.2)%fdb
end
vb = unifrnd(-a,a,1,dim); %Eq.(2.3)
vc = unifrnd(-b,b,1,dim);
for j=1:dim
r = rand();
A = randi([1,N]); % two positions randomly selected from population
B = randi([1,N]);
if r
X(i,j) = bestPositions(j)+ vb(j)*(weight( fdbindex,j)*X(fdbindex,j)-X(fdbindex,j));%fdb
else
X(i,j) = bestPositions(j)+ vb(j)*(weight( i,j)*X(A,j)-X(B,j));%fdb
end
else
X(i,j) = vc(j)*X(fdbindex,j);%fdb
end
end
end
end
Convergence_curve(it)=Destination_fitness;
%it=it+1;
end
bestFitness= Destination_fitness;
iteration=it;
disp(it)
end
% number for both ub and lb
if Boundary_no==1
Positions=rand(SearchAgents_no,dim).*(ub-lb)+lb;
end
if Boundary_no>1
for i=1:dim
ub_i=ub(i);
lb_i=lb(i);
Positions(:,i)=rand(SearchAgents_no,1).*(ub_i-lb_i)+lb_i;
end
end
end
3 Matlab代码实现
4 参考文献