BP神经网络基本概念

BP神经网络基本概念:

  

       BP神经网络,它模拟了人脑的神经网络的结构,而人大脑传递信息的基本单位是神经元,人脑中有大量的神经元,每个神经元与多个神经元相连接。BP神经网络,类似于上述,是一种简化的生物模型。每层神经网络都是由神经元构成的,单独的每个神经元相当于一个感知器。

       BP神经网络是一种多层的前馈神经网络,其主要的特点是:信号是前向传播的,而误差是反向传播的。

       大家记住,反复的念这句话:反向传播,反向传播,反向传播。那么反向传播的东西是什么呢?答案是:误差。就是在模拟过程中(这是一个循环,我们在训练神经网络的时候是要不断的去重复这个过程的)收集系统所产生的误差,并且返回这些误差到输出值,之后用这些误差来调整神经元的权重,这样生成一个可以模拟出原始问题的人工神经网络系统。

       输入层是单层结构的,输出层也是单层结构的,而隐藏层可以有多层,也可以是单层的。输入层、隐藏层、输出层之间的神经元都是相互连接的,为全连接。总得来说,BP神经网络结构就是,输入层得到刺激后,会把他传给隐藏层,至于隐藏层,则会根据神经元相互联系的权重并根据规则把这个刺激传给输出层,输出层对比结果,如果不对,则返回进行调整神经元相互联系的权值。这样就可以进行训练,最终学会,这就是BP神经网络模型。

BP神经网络基本概念_第1张图片

        不管生物或者神经学里在讲什么。在这,每一个神经元就是三件事:输入,判断和输出。输入层的神经元(就是那个圆形的圈,代表一个神经元或者一个神经细胞)是读入你输入的数据的。只要你有数据,这个玩意就能跑。这就好比你只要有汽油,汽车就能开是一个道理。中间则是”隐含层。“你可以控制这个隐含层的层数,以及每一层里有多少个神经元或者神经细胞。当然在实际操作里为了方便我们一般都直接认为你不管用几层,每层的神经元或者神经细胞数目都是一样的。因为这样的话写代码会比较方便。

       每一层神经元内部都不互相连接。而相邻层的神经元点之间则互相连接。在我们这个问题里,两个相邻层,所有的神经元都是相互连接的。你说可不可以通过让这些神经元之间不互相连接来起到效果?的确,历史上的连接学派就是这样想的。但实际上你可以都给他联上。其实道理非常简单。如果我们真的要取消某两个点之间的连接的话,那么很显然只要设定这条连线上的数值为零即可。这好比一个网络电路,阻值本身就是无限大的。

       除了神经元,你还需要关注一个东西,那便是神经线。在所有的神经线(两个神经元一连就是)上你可以赋予不同的权重。而这个则是训练的核心要务,说白了你就是那一套最接近完美答案的权重就可以了。

 

BP神经网络基本概念_第2张图片

你可能感兴趣的:(BP神经网络基本概念)