- 交通领域当中的视觉识别算法
若木胡
交通数据探索算法
以下是一些交通领域中常见的视觉识别算法:目标检测算法YOLO系列:YouOnlyLookOnce(YOLO)算法以其快速高效的特点在交通领域得到广泛应用。它能够在一张图像中同时检测多个目标,并快速确定目标的位置和类别。例如,在车辆检测中,可以准确识别出道路上不同类型的车辆,如轿车、卡车、公交车等;在行人检测方面,能够实时检测出行人的位置和姿态,为自动驾驶车辆或交通监控系统提供重要信息。YOLOv3
- 导出 YOLOv11 模型的详细步骤和说明
old_power
计算机视觉YOLO人工智能计算机视觉
以下是关于如何导出YOLOv11模型的详细步骤和说明:1.导出YOLOv11模型的基本步骤YOLOv11模型可以通过Ultralytics提供的接口轻松导出为多种格式,如ONNX、TensorRT、CoreML等。以下是导出模型的基本步骤:1.1安装Ultralytics库首先,确保已安装Ultralytics库:pipinstallultralytics1.2加载模型并导出使用Python代码加
- YOLOv5模型版本详解:n/s/m/l的区别与选型指南
我的青春不太冷
YOLOandroid经验分享程序人生笔记测试
文章目录一、模型版本概述二、核心参数对比2.1基本性能指标2.2计算复杂度三、架构设计差异3.1网络宽度控制3.1.1通道数变化3.1.2参数配置对比3.2网络深度配置四、性能表现分析4.1精度-速度曲线4.2资源消耗对比五、工程部署建议5.1设备适配方案5.2模型优化技巧5.2.1量化压缩5.2.2网络剪枝六、版本选型指南6.1决策流程图6.2场景化推荐七、总结建议一、模型版本概述YOLOv5是
- YOLOv11目标检测模型部署到微信小程序上
小阿技术
YOLO目标跟踪人工智能微信小程序目标检测计算机视觉python
1.效果YOLOv11目标检测模型部署到微信小程序上2.后端主要代码importosimporttimeimportnumpyasnpimporttorchfromflaskimportFlask,request,send_fileimportcv2fromultralyticsimportYOLO#导入YOLOv11模型,需要提前安装ultralytics库#初始化Flask应用app=Flas
- 基于C++和ONNX Runtime的YOLOv5目标检测实战
浪浪山小白兔
c++YOLO目标检测
1.前言在计算机视觉领域,目标检测是一项关键任务,其应用广泛,涵盖了安防监控、自动驾驶、工业检测等众多领域。YOLOv5作为一种先进的目标检测算法,以其速度快、精度高的特点备受关注。本文将详细介绍如何使用C++结合ONNXRuntime推理引擎来部署YOLOv5模型,实现高效的目标检测。2.ONNX与YOLOv52.1ONNX简介ONNX(OpenNeuralNetworkExchange)是一种
- 【YOLOv8改进 - 检测头】 RT-DETR检测头,解决传统目标检测器中非极大值抑制(NMS)所带来的速度和准确性之间的平衡问题
YOLO大师
YOLO人工智能论文阅读目标检测yolov8
YOLO目标检测创新改进与实战案例专栏专栏目录:YOLO有效改进系列及项目实战目录包含卷积,主干注意力,检测头等创新机制以及各种目标检测分割项目实战案例专栏链接:YOLO基础解析+创新改进+实战案例介绍摘要YOLO系列因其在速度和准确性之间的合理平衡,已成为实时目标检测中最受欢迎的框架。然而,我们观察到YOLO的速度和准确性受到非极大值抑制(NMS)的负面影响。最近,基于Transformer的端
- 基于YOLOv5、YOLOv8和YOLOv10的机场安检行李检测:深度学习应用与实现
2025年数学建模美赛
YOLO深度学习人工智能目标跟踪目标检测
引言随着全球航空运输业的持续增长,机场的安全性变得越来越重要。机场安检作为航空安全的重要组成部分,主要负责对乘客和行李进行检查,防止危险物品进入机场或飞行器。传统的安检方式多依赖人工检查,效率低下且容易出错。因此,基于深度学习的自动化行李检测系统应运而生,通过计算机视觉技术,自动识别和分类行李中的物品,大大提高了安检的效率与准确性。YOLO(YouOnlyLookOnce)系列算法,由于其高效的目
- YOLOv10全网最新创新点改进系列:YOLOv10融合SwinTransformer模块,分辨率每层变成一半,而通道数变成两倍,有效提升小目标检测效果!
AI棒棒牛
YOLO目标检测人工智能模型改进yolov10创新sci写作
YOLOv10全网最新创新点改进系列:YOLOv10融合SwinTransformer模块,分辨率每层变成一半,而通道数变成两倍,有效提升小目标检测效果!所有改进代码均经过实验测试跑通!截止发稿时YOLOv10已改进40+!自己排列组合2-4种后,考虑位置不同后可排列组合上千万种!改进不重样!!专注AI学术,关注B站up主:Ai学术叫叫兽er!购买相关资料后畅享一对一答疑!YOLOv10全网最新创
- 改进yolov8工业缺陷检测+swin+transformer
qq1309399183
计算机视觉实战项目集合YOLOtransformer深度学习人工智能计算机视觉机器学习神经网络
使用NEU-DET数据集进行缺陷检测的YOLOv8改进模型应用详解在现代工业生产过程中,质量控制是至关重要的一个环节。随着机器视觉技术和人工智能算法的发展,基于深度学习的方法已经成为自动化缺陷检测的重要工具。本篇将介绍一种基于NEU-DET数据集,利用YOLOv8及其改进版本(包含坐标注意力机制和SwinTransformer)进行缺陷检测的应用开发过程。我们将详细探讨从数据准备到模型训练,再到最
- 改进yolov8缺陷检测+swin+transformer
QQ_1309399183
计算机视觉实战项目集锦YOLOtransformer深度学习人工智能计算机视觉opencv机器学习
使用NEU-DET数据集进行缺陷检测的YOLOv8改进模型应用详解在现代工业生产过程中,质量控制是至关重要的一个环节。随着机器视觉技术和人工智能算法的发展,基于深度学习的方法已经成为自动化缺陷检测的重要工具。本篇将介绍一种基于NEU-DET数据集,利用YOLOv8及其改进版本(包含坐标注意力机制和SwinTransformer)进行缺陷检测的应用开发过程。我们将详细探讨从数据准备到模型训练,再到最
- YOLOv8/YOLOv11使用web界面推理自己的模型,Gradio框架快速搭建
挂科边缘
YOLOv8改进YOLO前端计算机视觉目标检测人工智能python
前言Gradio是一个开源Python库,用于快速构建和共享机器学习模型的Web界面。开发者可以通过简单的Python代码将机器学习模型封装成交互式应用,无需复杂的设置即可在浏览器中使用自己训练好模型。接下来教你使用Gradio框架构建一个简单Web界面推理YOLOv8/YOLOv11模型。话不多说上检测结果:一、YOLOv8/YOLOv11源码下载YOLOv8源码下载:官网打不开的话,从我的网盘
- YOLOv8改进,YOLOv8检测头融合DiverseBranchBlock,并添加小目标检测层(四头检测),适合目标检测、分割等
挂科边缘
YOLOv8改进YOLO目标检测人工智能计算机视觉深度学习
摘要一种卷积神经网络(ConvNet)的通用构建模块,以在不增加推理时间成本的情况下提高性能。该模块被命名为多样分支块(DiverseBranchBlock,DBB),通过结合不同尺度和复杂度的多样分支来丰富特征空间,包括卷积序列、多尺度卷积和平均池化,从而增强单个卷积的表示能力。在训练后,DBB可以等效地转换为一个单独的卷积层以进行部署。与新型ConvNet架构的进步不同,DBB在保持宏观架构的
- YOLOv10改进,YOLOv10改进主干网络为GhostNetV3(2024年华为的轻量化架构,全网首发),助力涨点
挂科边缘
YOLOv10改进YOLO计算机视觉目标检测人工智能python深度学习
摘要GhostNetV3是由华为诺亚方舟实验室的团队发布的,于2024年4月发布。摘要:紧凑型神经网络专为边缘设备上的应用设计,具备更快的推理速度,但性能相对适中。然而,紧凑型模型的训练策略目前借鉴自传统模型,这忽略了它们在模型容量上的差异,可能阻碍紧凑型模型的性能提升。在本文中,通过系统地研究不同训练成分的影响,我们介绍了一种用于紧凑型模型的强大训练策略。我们发现,适当的重参数化和知识蒸馏设计对
- 【YOLOv8改进】 YOLOv8 更换骨干网络之 GhostNet :通过低成本操作获得更多特征 (论文笔记+引入代码)
YOLO大师
YOLO论文阅读
YOLO目标检测创新改进与实战案例专栏专栏目录:YOLO有效改进系列及项目实战目录包含卷积,主干注意力,检测头等创新机制以及各种目标检测分割项目实战案例专栏链接:YOLO基础解析+创新改进+实战案例介绍摘要在嵌入式设备上部署卷积神经网络(CNNs)由于有限的内存和计算资源而变得困难。特征图中的冗余是那些成功的CNNs的一个重要特性,但在神经架构设计中很少被研究。本文提出了一种新颖的Ghost模块,
- 快速上手:C OpenCvSharp Yolov8 人脸关键点检测工具
卢枫岱
快速上手:C#OpenCvSharpYolov8人脸关键点检测工具COpenCvSharpYolov8FaceLandmarks.rar项目地址:https://gitcode.com/open-source-toolkit/4d2a0项目介绍在当今的数字化时代,人脸识别和关键点检测技术已经成为许多应用的核心组成部分。无论是安防监控、人机交互还是虚拟现实,准确且高效的人脸关键点检测都是不可或缺的。
- wandb
羊羊12312额3
python
PSE:\GitHub\yolov5-6.0>wandbinitLet'ssetupthisdirectoryforW&B!wandb:Networkerror(ProxyError),enteringretryloop.Aborted!PSE:\GitHub\yolov5-6.0>wandbinitLet'ssetupthisdirectoryforW&B!wandb:Networkerror(
- YOLOv10-1.1部分代码阅读笔记-model.py
红色的山茶花
YOLO笔记深度学习
model.pyultralytics\engine\model.py目录model.py1.所需的库和模块2.classModel(nn.Module):1.所需的库和模块#UltralyticsYOLO,AGPL-3.0licenseimportinspectimportsysfrompathlibimportPathfromtypingimportUnionimportnumpyasnpim
- YOLOv9改进,YOLOv9检测头融合,适合目标检测、分割任务
挂科边缘
YOLOv9改进目标检测人工智能计算机视觉YOLO
摘要空间注意力已广泛应用于提升卷积神经网络(CNN)的性能,但它存在一定的局限性。作者提出了一个新的视角,认为空间注意力机制本质上解决了卷积核参数共享的问题。然而,空间注意力生成的注意力图信息对于大尺寸卷积核来说是不足够的。因此,提出了一种新型的注意力机制——感受野注意力(RFA)。现有的空间注意力机制,如卷积块注意力模块(CBAM)和协调注意力(CA),仅关注空间特征,未能完全解决卷积核参数共享
- YOLOv8改进,YOLOv8检测头融合RFAConv卷积,并添加小目标检测层(四头检测),适合目标检测、分割等
挂科边缘
YOLOv8改进YOLO目标检测人工智能计算机视觉深度学习
摘要空间注意力已广泛应用于提升卷积神经网络(CNN)的性能,但它存在一定的局限性。作者提出了一个新的视角,认为空间注意力机制本质上解决了卷积核参数共享的问题。然而,空间注意力生成的注意力图信息对于大尺寸卷积核来说是不足够的。因此,提出了一种新型的注意力机制——感受野注意力(RFA)。现有的空间注意力机制,如卷积块注意力模块(CBAM)和协调注意力(CA),仅关注空间特征,未能完全解决卷积核参数共享
- yoloV8训练标注数据生成模型
安陆米香
目标检测计算机视觉YOLO目标检测计算机视觉
1、标注工具:vott2、yoloV82.1仓库地址https://github.com/ultralytics/ultralytics2.2参考教程文档文档地址:https://github.com/ultralytics/ultralytics/wiki3、数据集|标注数据格式3.1数据集格式【coco128】3.1.1下载地址:https://cocodataset.org/#downloa
- YOLOv10-1.1部分代码阅读笔记-loaders.py
红色的山茶花
YOLO笔记深度学习
loaders.pyultralytics\data\loaders.py目录loaders.py1.所需的库和模块2.classSourceTypes:3.classLoadStreams:4.classLoadScreenshots:5.classLoadImagesAndVideos:6.classLoadPilAndNumpy:7.classLoadTensor:8.defautocast
- 基于YOLOv5、YOLOv8和YOLOv10的自助售货机商品检测:深度学习实践与应用
2025年数学建模美赛
YOLO深度学习人工智能目标跟踪目标检测
引言自助售货机已经成为现代零售和自动化销售领域的重要组成部分。在自助售货机中,商品的检测与管理至关重要。通过精准的商品检测技术,售货机可以在商品售出后自动更新库存,并提供准确的商品信息反馈。然而,在复杂的环境下进行商品检测是一个具有挑战性的问题,尤其是在商品种类繁多、摆放方式多样以及光照条件变化较大的情况下。近年来,基于深度学习的目标检测算法,特别是YOLO(YouOnlyLookOnce)系列模
- 水稻穗检测数据集VOC+YOLO格式6038张1类别
FL1623863129
数据集YOLO深度学习机器学习
数据集格式:PascalVOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)图片数量(jpg文件个数):6038标注数量(xml文件个数):6038标注数量(txt文件个数):6038标注类别数:1标注类别名称:["daosui"]每个类别标注的框数:daosui框数=117696总框数:117696使用标注工具:labe
- 基于Damo-YOLO和DyHead检测头的YOLOv8优化:多尺度目标检测的创新方案【YOLOv8】
步入烟尘
YOLO系列创新涨点超专栏YOLO目标检测人工智能YOLOv8
本专栏专为AI视觉领域的爱好者和从业者打造。涵盖分类、检测、分割、追踪等多项技术,带你从入门到精通!后续更有实战项目,助你轻松应对面试挑战!立即订阅,开启你的YOLOv8之旅!专栏订阅地址:https://blog.csdn.net/mrdeam/category_12804295.html文章目录基于Damo-YOLO和DyHead检测头的YOLOv8优化:多尺度目标检测的创新方案【YOLOv8
- 提升YOLOv8性能:用Swin Transformer替换Backbone的详细实现与分析【YOLOv8】
步入烟尘
YOLO系列创新涨点超专栏YOLOv8YOLO目标跟踪
本专栏专为AI视觉领域的爱好者和从业者打造。涵盖分类、检测、分割、追踪等多项技术,带你从入门到精通!后续更有实战项目,助你轻松应对面试挑战!立即订阅,开启你的YOLOv8之旅!专栏订阅地址:https://blog.csdn.net/mrdeam/category_12804295.html文章目录YOLOv8改进|主干篇|SwinTransformer替换Backbone(附代码+详细修改步骤+
- YOLOv8与Transformer:探索目标检测的新架构
AI架构设计之禅
AI大模型应用入门实战与进阶大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
YOLOv8与Transformer:探索目标检测的新架构关键词:目标检测,深度学习,YOLOv8,Transformer,计算机视觉,卷积神经网络摘要:目标检测是计算机视觉领域的一项重要任务,其目标是从图像或视频中识别和定位特定对象。近年来,YOLO(YouOnlyLookOnce)系列算法以其高精度和高速度成为目标检测领域的佼佼者。最新版本的YOLOv8引入了Transformer架构,进一步
- YOLOv8 修改 IoU(CIOU, DIOU, SIOU, EIOU, Focal_EIOU)
有一个好名字
YOLOYOLO深度学习计算机视觉
这里简单介绍下怎么修改YOLOV8中的IOU,首先找到ultralytics/yolo/utils/metrics.py文件中的bbox_iou()方法。defbbox_iou(box1,box2,xywh=True,GIoU=False,DIoU=False,CIoU=False,eps=1e-7):"""CalculateIntersectionoverUnion(IoU)ofbox1(1,4
- DNA图谱分析:自动分析DNA图谱中的变异YOLOv5、YOLOv8、YOLOv10
2025年数学建模美赛
YOLO深度学习目标跟踪机器人人工智能
目录引言项目背景与目标YOLO模型简介DNA图谱数据集准备YOLOv5、YOLOv8和YOLOv10模型训练与优化DNA图谱变异检测的实现UI界面设计与实现评估与优化未来展望结论完整代码实现1.引言随着基因组学的进步,DNA图谱分析已经成为基因检测、疾病诊断、遗传学研究等领域的重要工具。在DNA图谱中,通常会呈现出染色体的多个片段,其中的一些变异可能对健康产生深远的影响。手工分析DNA图谱变异不仅
- YOLOv10改进,YOLOv10检测头融合RepConv卷积,添加小目标检测层(四头检测)+CA注意机制,全网首发
挂科边缘
YOLOv10改进YOLO目标检测人工智能计算机视觉
摘要作者提出了一种简单而强大的卷积神经网络架构,其推理阶段采用与VGG类似的网络体结构,仅由一堆3x3卷积和ReLU组成,而训练阶段的模型具有多分支拓扑。这种训练阶段和推理阶段架构的解耦通过结构重参数化技术实现,因此我们将该模型命名为RepVGG。#理论介绍RepConv通过将多个卷积操作合并成一个卷积操作来优化计算的。首先在训练过程中使用多种操作(如多个卷积层、跳跃连接等)来提高模型的表达能力和
- YOLOv11改进,YOLOv11检测头融合RepConv卷积,并添加小目标检测层(四头检测),适合目标检测、分割等任务
挂科边缘
YOLOv8改进YOLO目标检测人工智能计算机视觉
摘要作者提出了一种简单而强大的卷积神经网络架构,其推理阶段采用与VGG类似的网络体结构,仅由一堆3x3卷积和ReLU组成,而训练阶段的模型具有多分支拓扑。这种训练阶段和推理阶段架构的解耦通过结构重参数化技术实现,因此我们将该模型命名为RepVGG。#理论介绍RepConv通过将多个卷积操作合并成一个卷积操作来优化计算的。首先在训练过程中使用多种操作(如多个卷积层、跳跃连接等)来提高模型的表达能力和
- java线程的无限循环和退出
3213213333332132
java
最近想写一个游戏,然后碰到有关线程的问题,网上查了好多资料都没满足。
突然想起了前段时间看的有关线程的视频,于是信手拈来写了一个线程的代码片段。
希望帮助刚学java线程的童鞋
package thread;
import java.text.SimpleDateFormat;
import java.util.Calendar;
import java.util.Date
- tomcat 容器
BlueSkator
tomcatWebservlet
Tomcat的组成部分 1、server
A Server element represents the entire Catalina servlet container. (Singleton) 2、service
service包括多个connector以及一个engine,其职责为处理由connector获得的客户请求。
3、connector
一个connector
- php递归,静态变量,匿名函数使用
dcj3sjt126com
PHP递归函数匿名函数静态变量引用传参
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Current To-Do List</title>
</head>
<body>
- 属性颜色字体变化
周华华
JavaScript
function changSize(className){
var diva=byId("fot")
diva.className=className;
}
</script>
<style type="text/css">
.max{
background: #900;
color:#039;
- 将properties内容放置到map中
g21121
properties
代码比较简单:
private static Map<Object, Object> map;
private static Properties p;
static {
//读取properties文件
InputStream is = XXX.class.getClassLoader().getResourceAsStream("xxx.properti
- [简单]拼接字符串
53873039oycg
字符串
工作中遇到需要从Map里面取值拼接字符串的情况,自己写了个,不是很好,欢迎提出更优雅的写法,代码如下:
import java.util.HashMap;
import java.uti
- Struts2学习
云端月影
最近开始关注struts2的新特性,从这个版本开始,Struts开始使用convention-plugin代替codebehind-plugin来实现struts的零配置。
配置文件精简了,的确是简便了开发过程,但是,我们熟悉的配置突然disappear了,真是一下很不适应。跟着潮流走吧,看看该怎样来搞定convention-plugin。
使用Convention插件,你需要将其JAR文件放
- Java新手入门的30个基本概念二
aijuans
java新手java 入门
基本概念: 1.OOP中唯一关系的是对象的接口是什么,就像计算机的销售商她不管电源内部结构是怎样的,他只关系能否给你提供电就行了,也就是只要知道can or not而不是how and why.所有的程序是由一定的属性和行为对象组成的,不同的对象的访问通过函数调用来完成,对象间所有的交流都是通过方法调用,通过对封装对象数据,很大限度上提高复用率。 2.OOP中最重要的思想是类,类是模板是蓝图,
- jedis 简单使用
antlove
javarediscachecommandjedis
jedis.RedisOperationCollection.java
package jedis;
import org.apache.log4j.Logger;
import redis.clients.jedis.Jedis;
import java.util.List;
import java.util.Map;
import java.util.Set;
pub
- PL/SQL的函数和包体的基础
百合不是茶
PL/SQL编程函数包体显示包的具体数据包
由于明天举要上课,所以刚刚将代码敲了一遍PL/SQL的函数和包体的实现(单例模式过几天好好的总结下再发出来);以便明天能更好的学习PL/SQL的循环,今天太累了,所以早点睡觉,明天继续PL/SQL总有一天我会将你永远的记载在心里,,,
函数;
函数:PL/SQL中的函数相当于java中的方法;函数有返回值
定义函数的
--输入姓名找到该姓名的年薪
create or re
- Mockito(二)--实例篇
bijian1013
持续集成mockito单元测试
学习了基本知识后,就可以实战了,Mockito的实际使用还是比较麻烦的。因为在实际使用中,最常遇到的就是需要模拟第三方类库的行为。
比如现在有一个类FTPFileTransfer,实现了向FTP传输文件的功能。这个类中使用了a
- 精通Oracle10编程SQL(7)编写控制结构
bijian1013
oracle数据库plsql
/*
*编写控制结构
*/
--条件分支语句
--简单条件判断
DECLARE
v_sal NUMBER(6,2);
BEGIN
select sal into v_sal from emp
where lower(ename)=lower('&name');
if v_sal<2000 then
update emp set
- 【Log4j二】Log4j属性文件配置详解
bit1129
log4j
如下是一个log4j.properties的配置
log4j.rootCategory=INFO, stdout , R
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appe
- java集合排序笔记
白糖_
java
public class CollectionDemo implements Serializable,Comparable<CollectionDemo>{
private static final long serialVersionUID = -2958090810811192128L;
private int id;
private String nam
- java导致linux负载过高的定位方法
ronin47
定位java进程ID
可以使用top或ps -ef |grep java
![图片描述][1]
根据进程ID找到最消耗资源的java pid
比如第一步找到的进程ID为5431
执行
top -p 5431 -H
![图片描述][2]
打印java栈信息
$ jstack -l 5431 > 5431.log
在栈信息中定位具体问题
将消耗资源的Java PID转
- 给定能随机生成整数1到5的函数,写出能随机生成整数1到7的函数
bylijinnan
函数
import java.util.ArrayList;
import java.util.List;
import java.util.Random;
public class RandNFromRand5 {
/**
题目:给定能随机生成整数1到5的函数,写出能随机生成整数1到7的函数。
解法1:
f(k) = (x0-1)*5^0+(x1-
- PL/SQL Developer保存布局
Kai_Ge
近日由于项目需要,数据库从DB2迁移到ORCAL,因此数据库连接客户端选择了PL/SQL Developer。由于软件运用不熟悉,造成了很多麻烦,最主要的就是进入后,左边列表有很多选项,自己删除了一些选项卡,布局很满意了,下次进入后又恢复了以前的布局,很是苦恼。在众多PL/SQL Developer使用技巧中找到如下这段:
&n
- [未来战士计划]超能查派[剧透,慎入]
comsci
计划
非常好看,超能查派,这部电影......为我们这些热爱人工智能的工程技术人员提供一些参考意见和思想........
虽然电影里面的人物形象不是非常的可爱....但是非常的贴近现实生活....
&nbs
- Google Map API V2
dai_lm
google map
以后如果要开发包含google map的程序就更麻烦咯
http://www.cnblogs.com/mengdd/archive/2013/01/01/2841390.html
找到篇不错的文章,大家可以参考一下
http://blog.sina.com.cn/s/blog_c2839d410101jahv.html
1. 创建Android工程
由于v2的key需要G
- java数据计算层的几种解决方法2
datamachine
javasql集算器
2、SQL
SQL/SP/JDBC在这里属于一类,这是老牌的数据计算层,性能和灵活性是它的优势。但随着新情况的不断出现,单纯用SQL已经难以满足需求,比如: JAVA开发规模的扩大,数据量的剧增,复杂计算问题的涌现。虽然SQL得高分的指标不多,但都是权重最高的。
成熟度:5星。最成熟的。
- Linux下Telnet的安装与运行
dcj3sjt126com
linuxtelnet
Linux下Telnet的安装与运行 linux默认是使用SSH服务的 而不安装telnet服务 如果要使用telnet 就必须先安装相应的软件包 即使安装了软件包 默认的设置telnet 服务也是不运行的 需要手工进行设置 如果是redhat9,则在第三张光盘中找到 telnet-server-0.17-25.i386.rpm
- PHP中钩子函数的实现与认识
dcj3sjt126com
PHP
假如有这么一段程序:
function fun(){
fun1();
fun2();
}
首先程序执行完fun1()之后执行fun2()然后fun()结束。
但是,假如我们想对函数做一些变化。比如说,fun是一个解析函数,我们希望后期可以提供丰富的解析函数,而究竟用哪个函数解析,我们希望在配置文件中配置。这个时候就可以发挥钩子的力量了。
我们可以在fu
- EOS中的WorkSpace密码修改
蕃薯耀
修改WorkSpace密码
EOS中BPS的WorkSpace密码修改
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 201
- SpringMVC4零配置--SpringSecurity相关配置【SpringSecurityConfig】
hanqunfeng
SpringSecurity
SpringSecurity的配置相对来说有些复杂,如果是完整的bean配置,则需要配置大量的bean,所以xml配置时使用了命名空间来简化配置,同样,spring为我们提供了一个抽象类WebSecurityConfigurerAdapter和一个注解@EnableWebMvcSecurity,达到同样减少bean配置的目的,如下:
applicationContex
- ie 9 kendo ui中ajax跨域的问题
jackyrong
AJAX跨域
这两天遇到个问题,kendo ui的datagrid,根据json去读取数据,然后前端通过kendo ui的datagrid去渲染,但很奇怪的是,在ie 10,ie 11,chrome,firefox等浏览器中,同样的程序,
浏览起来是没问题的,但把应用放到公网上的一台服务器,
却发现如下情况:
1) ie 9下,不能出现任何数据,但用IE 9浏览器浏览本机的应用,却没任何问题
- 不要让别人笑你不能成为程序员
lampcy
编程程序员
在经历六个月的编程集训之后,我刚刚完成了我的第一次一对一的编码评估。但是事情并没有如我所想的那般顺利。
说实话,我感觉我的脑细胞像被轰炸过一样。
手慢慢地离开键盘,心里很压抑。不禁默默祈祷:一切都会进展顺利的,对吧?至少有些地方我的回答应该是没有遗漏的,是不是?
难道我选择编程真的是一个巨大的错误吗——我真的永远也成不了程序员吗?
我需要一点点安慰。在自我怀疑,不安全感和脆弱等等像龙卷风一
- 马皇后的贤德
nannan408
马皇后不怕朱元璋的坏脾气,并敢理直气壮地吹耳边风。众所周知,朱元璋不喜欢女人干政,他认为“后妃虽母仪天下,然不可使干政事”,因为“宠之太过,则骄恣犯分,上下失序”,因此还特地命人纂述《女诫》,以示警诫。但马皇后是个例外。
有一次,马皇后问朱元璋道:“如今天下老百姓安居乐业了吗?”朱元璋不高兴地回答:“这不是你应该问的。”马皇后振振有词地回敬道:“陛下是天下之父,
- 选择某个属性值最大的那条记录(不仅仅包含指定属性,而是想要什么属性都可以)
Rainbow702
sqlgroup by最大值max最大的那条记录
好久好久不写SQL了,技能退化严重啊!!!
直入主题:
比如我有一张表,file_info,
它有两个属性(但实际不只,我这里只是作说明用):
file_code, file_version
同一个code可能对应多个version
现在,我想针对每一个code,取得它相关的记录中,version 值 最大的那条记录,
SQL如下:
select
*
- VBScript脚本语言
tntxia
VBScript
VBScript 是基于VB的脚本语言。主要用于Asp和Excel的编程。
VB家族语言简介
Visual Basic 6.0
源于BASIC语言。
由微软公司开发的包含协助开发环境的事
- java中枚举类型的使用
xiao1zhao2
javaenum枚举1.5新特性
枚举类型是j2se在1.5引入的新的类型,通过关键字enum来定义,常用来存储一些常量.
1.定义一个简单的枚举类型
public enum Sex {
MAN,
WOMAN
}
枚举类型本质是类,编译此段代码会生成.class文件.通过Sex.MAN来访问Sex中的成员,其返回值是Sex类型.
2.常用方法
静态的values()方