第二类换元法倒代换专项训练

前置知识:第二类换元法

题1: 计算 ∫ 1 x 10 + x d x \int\dfrac{1}{x^{10}+x}dx x10+x1dx

解:
\qquad x = 1 t x=\dfrac 1t x=t1 t = 1 x t=\dfrac 1x t=x1 d x = − 1 t 2 d t dx=-\dfrac{1}{t^2}dt dx=t21dt

\qquad 原式 = ∫ 1 1 t 10 + 1 t ⋅ ( − 1 t 2 ) d t = − ∫ t 8 1 + t 9 d t =\int \dfrac{1}{\frac{1}{t^{10}}+\frac 1t}\cdot(-\dfrac{1}{t^2})dt=-\int\dfrac{t^{8}}{1+t^9}dt =t101+t11(t21)dt=1+t9t8dt

= − 1 9 ln ⁡ ( 1 + t 9 ) + C = − 1 9 ln ⁡ ( 1 + 1 x 9 ) + C \qquad\qquad =-\dfrac 19\ln(1+t^9)+C=-\dfrac 19\ln(1+\dfrac{1}{x^9})+C =91ln(1+t9)+C=91ln(1+x91)+C


题2: 计算 ∫ 1 x ( x 7 + 1 ) d x \int\dfrac{1}{x(x^7+1)}dx x(x7+1)1dx

解:
\qquad x = 1 t x=\dfrac 1t x=t1 t = 1 x t=\dfrac 1x t=x1 d x = − 1 t 2 d t dx=-\dfrac{1}{t^2}dt dx=t21dt

\qquad 原式 = ∫ 1 1 t 8 + 1 t ⋅ ( − 1 t 2 ) d t = − ∫ t 6 1 + t 7 d t =\int\dfrac{1}{\frac{1}{t^8}+\frac 1t}\cdot(-\dfrac{1}{t^2})dt=-\int\dfrac{t^6}{1+t^7}dt =t81+t11(t21)dt=1+t7t6dt

= − 1 7 ln ⁡ ( 1 + t 7 ) + C = − 1 7 ln ⁡ ( 1 + 1 x 7 ) + C \qquad\qquad =-\dfrac 17\ln(1+t^7)+C=-\dfrac 17\ln(1+\dfrac{1}{x^7})+C =71ln(1+t7)+C=71ln(1+x71)+C


题3: 计算 ∫ 1 ( 1 + x ) 1 − x − x 2 d x \int\dfrac{1}{(1+x)\sqrt{1-x-x^2}}dx (1+x)1xx2 1dx

解:
\qquad 1 + x = 1 t 1+x=\dfrac 1t 1+x=t1 t = 1 1 + x t=\dfrac{1}{1+x} t=1+x1 d x = − 1 t 2 d t dx=-\dfrac{1}{t^2}dt dx=t21dt

\qquad 原式 = ∫ 1 ( 1 + x ) 1 + ( x + 1 ) − ( x + 1 ) 2 d x = ∫ 1 1 t 1 + 1 t − 1 t 2 ⋅ ( − 1 t 2 ) d t =\int\dfrac{1}{(1+x)\sqrt{1+(x+1)-(x+1)^2}}dx=\int\dfrac{1}{\frac 1t\sqrt{1+\frac 1t-\frac{1}{t^2}}}\cdot(-\dfrac{1}{t^2})dt =(1+x)1+(x+1)(x+1)2 1dx=t11+t1t21 1(t21)dt

= − ∫ 1 t 2 + t − 1 d t = − ∫ 1 ( t + 1 2 ) 2 − 5 4 d t \qquad\qquad =-\int\dfrac{1}{\sqrt{t^2+t-1}}dt=-\int\dfrac{1}{\sqrt{(t+\frac 12)^2-\frac 54}}dt =t2+t1 1dt=(t+21)245 1dt

= − ln ⁡ ∣ ( t + 1 2 ) + t 2 + t − 1 ∣ + C \qquad\qquad =-\ln|(t+\dfrac 12)+\sqrt{t^2+t-1}|+C =ln(t+21)+t2+t1 +C

= ln ⁡ ∣ 3 + x + 2 1 − x − x 2 2 ( 1 + x ) ∣ + C \qquad\qquad =\ln|\dfrac{3+x+2\sqrt{1-x-x^2}}{2(1+x)}|+C =ln2(1+x)3+x+21xx2 +C


由直接积分法可得 ∫ d x x 2 − a 2 = ln ⁡ ∣ x + x 2 − a 2 ∣ + C \int\dfrac{dx}{\sqrt{x^2-a^2}}=\ln|x+\sqrt{x^2-a^2}|+C x2a2 dx=lnx+x2a2 +C,同样也可得 ∫ d x ( x + k ) 2 − a 2 = ln ⁡ ∣ ( x + k ) + ( x + k ) 2 − a 2 ∣ + C \int\dfrac{dx}{\sqrt{(x+k)^2-a^2}}=\ln|(x+k)+\sqrt{(x+k)^2-a^2}|+C (x+k)2a2 dx=ln(x+k)+(x+k)2a2 +C
所以解题过程中 − ∫ 1 ( t + 1 2 ) 2 − 5 4 d t = − ln ⁡ ∣ ( t + 1 2 ) + t 2 + t − 1 ∣ + C -\int\dfrac{1}{\sqrt{(t+\frac 12)^2-\frac 54}}dt=-\ln|(t+\dfrac 12)+\sqrt{t^2+t-1}|+C (t+21)245 1dt=ln(t+21)+t2+t1 +C


总结

观察被积函数,若分母比较复杂,令 x = 1 t x=\dfrac 1t x=t1,有时可以令 x + a = 1 t x+a=\dfrac 1t x+a=t1,然后进行转换,利用被积函数的特性来求解。

你可能感兴趣的:(数学,数学)