- Flutter从0到1:构建跨平台应用的新选择
卓桢琳Blackbird
Flutter从0到1:构建跨平台应用的新选择去发现同类优质开源项目:https://gitcode.com/在移动开发领域,寻求一款既能提供高性能,又能实现跨平台的框架是开发者们永恒的话题。这就是我们要向您推荐的【Flutter从0到1】项目,它是一个详细、全面的Flutter学习资源库,旨在帮助初学者和有经验的开发者迅速掌握Flutter并构建出高质量的应用。项目简介Flutterfrom0t
- C语言学习笔记-进阶(17)预处理详解
John.Lewis
c语言学习笔记
1.预定义符号C语言设置了一些预定义符号,可以直接使用,预定义符号也是在预处理期间处理的。__FILE__//进⾏编译的源⽂件__LINE__//⽂件当前的⾏号__DATE__//⽂件被编译的⽇期__TIME__//⽂件被编译的时间__STDC__//如果编译器遵循ANSIC,其值为1,否则未定义举个例子:printf("file:%sline:%d\n",__FILE__,__LINE__);2
- Flutter 从入门到进阶:构建跨平台应用的最佳实践
萧鼎
软硬件与前后端详解flutter
引言Flutter是Google推出的一款开源UI框架,能够帮助开发者使用Dart语言构建高性能、跨平台的移动、桌面和Web应用。它以“一次编写,到处运行”的特点吸引了众多开发者。Flutter采用自绘UI渲染引擎(Skia),能够提供原生级的性能体验。本文将从Flutter的基本概念入手,深入探讨其核心组件、状态管理、性能优化以及一些进阶技巧。1.Flutter的核心概念在学习Flutter之前
- 数据挖掘技术介绍
柒柒钏
数据挖掘数据挖掘人工智能
数据挖掘技术介绍分类聚类关联规则挖掘预测异常检测特征选择与降维文本挖掘序列模式挖掘深度学习集成学习数据挖掘(DataMining)是一种从大量数据中提取有用信息和模式的技术,旨在从数据中发现隐藏的规律、趋势或关系,从而为决策提供支持。分类定义:是一种监督学习方法,用于将数据分为不同的类别。功能:根据已标记的训练数据,学习一个模型,用于预测新数据的类别。方法:决策树、支持向量机、神经网络、逻辑回归、
- You are using pip version 10.0.1, however version 20.0.2 is available.的解决方案
柒柒钏
小知识点python
在安装第三方库时出现以下提示:Youareusingpipversion10.0.1,howeverversion20.0.2isavailable.输入:python-mpipinstall--upgradepip结果:还是提示上述错误输入:python-mpipinstall--Upip结果:如下所示,更新完成之后继续安装第三库即可。
- 应用统计学学什么科目_统计学考研科目分别有哪些?你都知道吗
心言星愿
应用统计学学什么科目
在现实社会社会中统计学的应用范围是比较广泛的,想要报考统计学的朋友也是不再少数的,那么问题就来了关于统计学应该要学习哪一些科目呢,下面就来详细的看一下关于统计学方向具体的统计学考研科目分别有那些。首先对于统计学来讲英语政治史必然的初试科目,而专业课的考研科目具体是什么还是要看你选择的院校的实际出题情况了,所以在确定了考研科目之后一定要在在确定一下你想去的高校,以便能够更好的准备。在来看一下在学校方
- LoRa无线技术解析
wmq163
物联网lora
一、Lora技术基础与特点1、LoRa是一种低功耗广域网通信(LPWAN)技术中的一种,是Semtech公司采用和推广的一种基于扩频技术的超远距离无线传输技术。比sigfox的FSK技术更加灵敏,传送距离更远,更节能。2、LoRa是物理层(PHY)协议,能被应用在几乎所有的网络技术中。3、LoRa模块主要在全球免费频段运行,频率范围从137MHz-1050MHz,常见的主要是433MHz、868M
- Spring Cloud 与微服务学习总结(14)—— 云原生时代,如何从 Java 开发者转型微服务?
一杯甜酒
SpringCloud与微服务java云原生springcloud微服务微服务架构
前言根据维基百科定义,微服务不是整体应用程序中的一个层。相反,微服务是一个独立的业务功能,具有清晰的接口,并且可以通过内部组件实现分层架构。从战略角度来看,微服务架构基本上遵循“做一件事,就要做得好”的Unix哲学。为了应对传统单体架构的缺陷,微服务架构被企业广泛应用。然而,实践之前有很多问题都需要提前考虑清楚,比如Java背景的开发者是否更有优势?微服务、容器化、DevOps和CI/CD之间的关
- 101、探索Rust模式匹配的奥秘:简洁代码的艺术
多多的编程笔记
Rust之Web开发rust开发语言后端
Rust模式匹配:学会使用match表达式进行模式匹配,了解iflet和whilelet的用法在编程中,我们经常需要根据不同的条件来执行不同的代码块。Rust语言提供了丰富的模式匹配机制,使得这种根据条件分支执行代码变得简单而直观。本文将介绍Rust中的模式匹配,重点讲解match表达式,以及iflet和whilelet的用法。一、Match表达式Match表达式是Rust中进行模式匹配的一种机制
- 深度学习在医疗影像诊断中的应用与实现
Evaporator Core
#DeepSeek快速入门人工智能#深度学习深度学习人工智能
引言随着人工智能技术的快速发展,深度学习在医疗领域的应用日益广泛,尤其是在医疗影像诊断方面。医疗影像数据量大、复杂度高,传统的诊断方法往往依赖于医生的经验,容易受到主观因素的影响。而深度学习通过自动学习特征,能够从海量数据中提取出有用的信息,辅助医生进行更精准的诊断。本文将探讨深度学习在医疗影像诊断中的应用,并通过代码示例展示如何实现一个简单的医疗影像分类模型。深度学习在医疗影像诊断中的应用1.图
- PINN物理信息网络 | 基于物理信息神经网络PINN求解Burger方程
算法如诗
物理信息网络(PINN)神经网络人工智能深度学习物理信息网络
基于物理信息神经网络(PINN)求解Burger方程的研究背景源于对非线性偏微分方程(PDE)求解方法的不断探索和改进。传统的数值方法,如有限差分法和有限元法,通常需要进行网格离散化和迭代求解,对于复杂的非线性问题计算成本较高。因此,研究人员开始探索基于机器学习和神经网络的新方法来求解PDEs。神经网络在近年来取得了显著的发展,能够通过学习大量数据来建立输入和输出之间的复杂映射关系。然而,将神经网
- 图神经网络学习笔记—高级小批量处理(专题十四)
AI专题精讲
图神经网络入门到精通人工智能
小批量(mini-batch)的创建对于让深度学习模型的训练扩展到海量数据至关重要。与逐条处理样本不同,小批量将一组样本组合成一个统一的表示形式,从而可以高效地并行处理。在图像或语言领域,这一过程通常通过将每个样本缩放或填充为相同大小的形状来实现,然后将样本在一个额外的维度中分组。该维度的长度等于小批量中分组的样本数量,通常称为batch_size。由于图是能够容纳任意数量节点或边的最通用的数据结
- 医学文本分析中的命名实体识别:从理论到实践
软件职业规划
语言模型unity人工智能
1.数据预处理数据预处理是医学命名实体识别系统的基础步骤,其质量直接影响模型的训练效果和最终性能。数据预处理主要包括医学文本的标注、清洗以及数据增强三个方面。1.1医学文本的标注标注是数据预处理中的关键环节,其目的是将医学文本中的实体明确标记出来,以便模型能够学习到实体的特征和边界。标注的方式通常采用BIO标注法。1.1.1BIO标注法BIO标注法是一种广泛应用于命名实体识别任务的标注方式,它通过
- 每天五分钟玩转深度学习PyTorch:基于GoogLeNet完成CAFIR10分类
每天五分钟玩转人工智能
深度学习框架pytorch深度学习pytorch分类GoogLeNet人工智能CAFIR10
本文重点前面我们终于使用pytorch搭建了GoogLeNet,本文我们使用该网络模型解决一个实际问题,也就是使用它完成CAFIR10分类,其实就这些任务而言,我们只要搭建好模型,然后把数据喂进去就行了,其它的地方都是一样的,就是网络模型不一样。代码
- 【零基础JavaScript入门 | Day1】从“消费记账“案例学编程基础 ⭐表格制作+数据类型转换全解析
helbyYoung
JavaScrip学习javascript学习
【零基础JavaScript入门|Day1】从"消费记账"案例学编程基础⭐表格制作+数据类型转换全解析今日学习重点:✅数据与现实的映射关系→网页表格如何承载生活数据✅变量容器的本质→用let管理三大消费支出✅隐式类型转换技巧→+prompt()输入处理的妙用✅模板字符串实战→动态生成消费报表案例亮点:1️⃣用户交互三部曲:通过prompt()实现饮食/交通/娱乐费用的分步输入2️⃣自动统计系统:t
- 主流架构模式全景解析:微服务 vs SOA vs 单体架构的终极抉择指南
Eqwaak00
分布式系统设计实战科技微服务架构
一、架构演进史:从巨石到微粒的进化之路(图示:1970s单体→2000sSOA→2010s微服务→2020s云原生)二、三大架构模式深度拆解2.1单体架构(MonolithicArchitecture)核心特征graphTDA[单体应用]-->B[用户界面]A-->C[业务逻辑]A-->D[数据访问]B-->E[Web/移动端]C-->F[订单处理]C-->G[支付处理]D-->H[MySQL]D
- Deepseek:物理神经网络PINN入门教程
天一生水water
神经网络人工智能深度学习
一、物理信息网络(PINN)的概念与原理1.定义与来源物理信息网络(Physics-InformedNeuralNetworks,PINN)是一种将物理定律(如偏微分方程、守恒定律等)嵌入神经网络训练过程的深度学习方法。其核心思想是通过神经网络同时拟合观测数据并满足物理约束,从而解决传统数值方法难以处理的高维、噪声数据或复杂边界条件问题。来源:PINN起源于对传统数值方法局限性的改进需求(如网格生
- 掌握Rust模式匹配:从基础语法到实际应用
GTokenTool发币平台
rust开发语言后端
本篇文章将探讨Rust编程语言中至关重要的特性之一——模式匹配。Rust语言的模式匹配功能强大,不仅能处理简单的值匹配,还能解构和操作复杂的数据结构。通过深入学习模式匹配,程序员可以更加高效地编写出清晰、简洁且易于维护的代码。Rust语言中的模式匹配是一种特殊的语法结构,用于匹配变量、解构数组、结构体、枚举和元组等。本文主要介绍了Rust中各种模式的使用场景,包括match、iflet、while
- P1010 [NOIP 1998 普及组] 幂次方
黄昏岭
算法java
题目描述任何一个正整数都可以用2的幂次方表示。例如137=27+23+20。同时约定次方用括号来表示,即ab可表示为a(b)。由此可知,137可表示为2(7)+2(3)+2(0)进一步:7=22+2+20(21用2表示),并且3=2+20。所以最后137可表示为2(2(2)+2+2(0))+2(2+2(0))+2(0)。又如1315=210+28+25+2+1所以1315最后可表示为2(2(2+2
- 网络安全还值得学习吗?
黑客呀
计算机网络安全网络工程师web安全学习安全
在信息化时代,网络安全行业备受关注,可谓是万人瞩目。而且网络安全也被贴上了前景好、需求大、潜力广、就业好、薪资高等标签,那么网络安全真的值得学习吗?我们一起来看看吧。答案是肯定的,网络安全是非常值得学习的技术。市场需求:随着互联网的普及和数字化转型的加速,网络安全问题日益凸显。企业、政府和个人对网络安全的需求不断增长,这导致了网络安全专业人才的稀缺。因此,从市场需求的角度来看,网络安全专业具有较大
- Android - ViewPager 从基础到进阶
whd_Alive
Android基础AndroidViewPager
前言好记性不如烂笔头,学习的知识总要记录下来,通过本文来加深对ViewPager方方面面的理解:ViewPager的基础介绍PagerAdapter+FragmentPagerAdapter&FragmentStatePagerAdapter与Fragment+TabLayout的联动使用Banner轮播图自定义切换动画首次登录引导界面闲话少说,下面进入正题。基础介绍ViewPager是Andro
- Git学习总结(9)——如何构建你自己的 Git 服务器
一杯甜酒
Git
现在我们将开始学习如何构建一个Git服务器,如何在具体的事件中写一个针对特定的触发操作的自定义Git(例如通告),如何发布你的代码到一个网站。
- 金融风控可解释性算法安全优化实践
智能计算研究中心
其他
内容概要在金融风险控制领域,算法的可解释性与安全性已成为技术落地的核心挑战。本文从实际业务场景出发,系统性梳理可解释性算法与联邦学习、特征工程的协同框架,通过超参数优化与动态模型评估机制,构建透明化决策链路。在技术实现层面,重点解析支持向量机与随机森林的改进方案,结合数据清洗与标注的标准化流程,强化风险预测模型在准确率、F1值等关键指标的表现,同时兼顾合规性与安全边界的设计要求。提示:金融机构在部
- H100解锁生成式AI算力新纪元
智能计算研究中心
其他
内容概要英伟达H100GPU以Hopper架构为核心,重新定义了生成式AI的算力边界。其创新性设计聚焦三大技术支柱:第三代TensorCore通过稀疏计算与混合精度支持,显著提升矩阵运算效率;显存带宽优化技术结合HBM3高带宽内存,将数据吞吐量提升至3.35TB/s,有效缓解大规模模型训练中的显存墙问题;动态编程加速器则针对AI工作负载特征实现指令级优化。这些突破使H100在生成式AI训练中实现高
- 生成对抗网络优化医疗影像分析方法
智能计算研究中心
其他
内容概要生成对抗网络(GAN)在医疗影像分析中的应用正经历从理论验证到临床落地的关键转型。本研究通过整合联邦学习算法与动态数据增强技术,构建了跨机构医疗影像协同分析框架,在保证患者隐私的前提下实现了数据资源的有效扩展。值得注意的是,算法优化过程中采用的三阶段特征工程策略——包括基于注意力机制的特征选择、多尺度特征融合以及可解释性特征映射——使模型决策透明度提升约37.6%。临床实践表明,将联邦学习
- python实现KNN算法的手写数字识别:深入解析与完整项目流程
快撑死的鱼
Python算法精解算法
随着人工智能和机器学习的快速发展,图像识别技术在多个领域得到广泛应用。而手写数字识别作为图像识别的典型场景之一,已经成为研究者和开发者学习、应用机器学习算法的经典项目。本文将深入解析如何使用Python编程语言,结合KNN(K-最近邻)算法实现手写数字识别系统。文章不仅介绍了算法的核心原理,还从用户交互、图像处理、数据预处理等多个角度对整个项目进行了全方位的讲解。读者通过本文,可以全面掌握手写数字
- 学习面向对象编程之前的准备工作(二)
笺上山河梦
C++学习c++算法开发语言
综述本次学习的所有知识点如下:/**C++struct使用*//**Filename:StructDemo.cpp*AuthorName:xxx*Date:2025.3.10*Email:xxxxxxxxxxxxxx*Function:DemonstrationtohowtousethestructureofC++.*/#include#includeusingnamespacestd;//结构体
- VLAN和Trunk实验
青.衫
智能路由器网络
VLAN和Trunk实验实验拓扑实验需求1.按照图示给所有路由器(此处充当pc机)配置IP地址2.SW1和SW2上分别创建vlan10和vlan20,要求R1和R3属于vlan10,R2和R4属于vlan203.SW1和SW2相连的接口配置类型为trunk类型,允许vlan10和vlan20通过4.测试效果,同一vlan的路由器可以互通,不同vlan的路由器无法互通实验步骤1.路由器配置IP地址在
- P1164 小A点菜【java】【AC代码】
黄昏岭
算法
题目背景uim神犇拿到了uoi的ra(镭牌)后,立刻拉着基友小A到了一家……餐馆,很低端的那种。uim指着墙上的价目表(太低级了没有菜单),说:“随便点”。题目描述不过uim由于买了一些书,口袋里只剩M元(M≤10000)。餐馆虽低端,但是菜品种类不少,有N种(N≤100),第i种卖ai元(ai≤1000)。由于是很低端的餐馆,所以每种菜只有一份。小A奉行“不把钱吃光不罢休”的原则,所以他点单一定
- 论当今的精神状态...(2025.3.14)
VU-zFaith870
日常随笔模拟退火算法
好无聊好烦喏,字符串、线段树、深搜宽搜、DP还有数论...无语。最近OI那边又有西安多校集训的消息,13天的集训,多少是长点。不去是OI的溃败,去了就是whk的惨退。挺纠结,跟家长聊聊吧,大抵是不同意i,我也不打算去,现在OI是有点紧张,但文化成绩别退啊,很难受...我还是习惯在学校安然自得地静心学习,闲暇时放松身心,焦虑时做些心理工作(去找心理老师不错),迷茫时还有身边的一切。因为我眷恋这里..
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理