- 【NLP】gensim lda使用方法
zkq_1986
NLP
OptimizedLatentDirichletAllocation(LDA)inPython.ForafasterimplementationofLDA(parallelizedformulticoremachines),seealsogensim.models.ldamulticore.ThismoduleallowsbothLDAmodelestimationfromatrainingcor
- Python自然语言处理库之gensim使用详解
Rocky006
python开发语言
概要Gensim是一个专门用于无监督主题建模和自然语言处理的Python开源库,由捷克共和国的RadimŘehůřek开发。该库专注于处理大规模文本数据,提供了多种经典的主题建模算法,如LDA(潜在狄利克雷分配)、LSI(潜在语义索引)等,以及现代化的词向量模型Word2Vec、Doc2Vec、FastText等。Gensim的设计理念是"为人类而非机器",强调易用性和可扩展性,特别适合处理无标签
- 城市疫情态势发展与动态调控可视分析
罗伯特之技术屋
智能科学与技术专栏深度学习人工智能
摘要为了解决新冠肺炎疫情医疗资源的合理调配问题,以武汉方舱新冠肺炎疫情数据为基础,融合舆情、时空轨迹等多源数据,针对疫情防控搭建了方舱医院动态调控平台。引入水滴图表征方式动态监测方舱医院,采用主题模型融合情感词典提取群众情感特征,并借助WordStream呈现城市舆情发展,提出基于医院负载量的路径规划算法实现合理路线推荐,提供面向群众的科普信息和城市复苏板块以提升抗疫信心。该系统有利于实现人力、物
- 5.15 day21
AщYΘ
人工智能算法
知识点回顾:LDA线性判别PCA主成分分析t-sne降维自由作业:探索下什么时候用到降维?降维的主要应用?或者让ai给你出题,群里的同学互相学习下。可以考虑对比下在某些特定数据集上t-sne的可视化和pca可视化的区别。一、何时需要使用降维?1.数据高维困境维度灾难(CurseofDimensionality):当特征维度超过样本数量时,模型容易过拟合存储与计算成本:高维数据需要更多存储空间,算法
- 【统计方法】基础分类器: logistic, knn, svm, lda
pen-ai
数据科学支持向量机算法机器学习
均方误差(MSE)理解与分解在监督学习中,均方误差衡量的是预测值与实际值之间的平均平方差:MSE=E[(Y−f^(X))2]\text{MSE}=\mathbb{E}[(Y-\hat{f}(X))^2]MSE=E[(Y−f^(X))2]MSE可以分解为三部分:MSE=Bias2(f^(x0))+Var(f^(x0))+Var(ε)\text{MSE}=\text{Bias}^2(\hat{f}(x
- 基于LDA特征提取的人脸识别算法matlab仿真
fpga和matlab
MATLAB板块2:图像-特征提取处理matlabLDA特征提取人脸识别
目录一、理论基础2.1PCA特征提取2.2LDA特征提取1.3实现步骤二、核心程序三、仿真结论一、理论基础人脸识别技术是一种广泛应用于安防、金融、医疗等领域的技术,它可以识别出人脸图像中的人物身份信息。基于LDA特征提取的人脸识别算法是一种常用的人脸识别方法,它通过对人脸图像进行特征提取,从而实现人脸识别。本文将从数学公式和实现步骤两个方面,详细介绍基于LDA特征提取的人脸识别算法。2.1PCA特
- 基于LDA的人脸识别算法及Matlab代码
翠绿探寻
算法matlab开发语言Matlab
基于LDA的人脸识别算法及Matlab代码人脸识别是一种常见的生物特征识别技术,它在许多领域中发挥着重要作用,如安全监控、身份验证和人机交互等。本文将介绍一种基于线性判别分析(LinearDiscriminantAnalysis,简称LDA)的人脸识别算法,并提供相应的Matlab代码实现。LDA是一种经典的降维算法,它通过将高维特征空间投影到低维空间,实现对数据的降维和分类。在人脸识别中,LDA
- 基于Matlab实现LDA算法
Matlab仿真实验室
Matlab仿真实验1000例matlab算法开发语言
线性判别分析(LinearDiscriminantAnalysis,LDA)是一种经典的统计方法,常用于特征降维和分类问题。在机器学习领域,一、LDA基本原理LDA的目标是寻找一个投影空间,使得类间距离最大化,同时保持类内距离最小化。在这个新空间中,不同类别的样本能够得到更好的分离。LDA假设样本服从多变量正态分布,并且各类别的协方差矩阵相同。通过解决特定的优化问题,我们可以找到最优的投影向量。二
- python学习day21
一叶知秋秋
python学习笔记学习
知识点回顾:1.LDA线性判别2.PCA主成分分析3.t-sne降维数据如前几期无监督降维定义:这类算法在降维过程中不使用任何关于数据样本的标签信息输入:只有特征矩阵X。目标:保留数据中尽可能多的方差(如PCA)。保留数据的局部或全局流形结构(如LLE,Isomap,t-SNE,UMAP)。找到能够有效重构原始数据的紧凑表示(如Autoencoder)。找到统计上独立的成分(如ICA)。典型算法:
- Python打卡训练营day21——2025.05.10
莱茵菜苗
python开发语言
LDA线性判别PCA主成分分析t-sne降维降维技术的应用场景与主要用途降维技术广泛应用于多个领域,尤其是在数据分析、机器学习和数据可视化中扮演着重要角色。通过减少数据的维度,不仅可以降低计算复杂度,还能帮助揭示隐藏在高维数据中的结构和模式1。应用场景数据预处理:在构建机器学习模型之前,降维可以去除冗余特征并提高模型性能。数据压缩:通过保留最重要的信息来减小存储需求和传输成本。噪声过滤:某些降维方
- NLP-gensim库
安替-AnTi
NLP
Gensim是一款开源的第三方Python工具包,用于从原始的非结构化的文本中,无监督地学习到文本隐层的主题向量表达。它支持包括TF-IDF,LSA,LDA,和word2vec在内的多种主题模型算法,支持流式训练,并提供了诸如相似度计算,信息检索等一些常用任务的API接口。LSILDAHDPDTMDIMTF-IDFword2vec、paragraph2vec基本概念语料(Corpus):一组原始文
- Python库: gensim
司南锤
python基础学习PYTHON库python开发语言
Gensim是一个用于主题建模、文档索引和大型语料库相似性检索的Python库。主要用于处理自然语言处理(NLP)和信息检索(IR)任务。Gensim的设计目标是处理原始的、非结构化的文本数据,并且能够高效地处理大规模数据集。以下是Gensim库的一些主要功能和组件:1.主题建模Gensim提供了多种主题建模算法,其中最著名的是LatentDirichletAllocation(LDA)。LDA是
- GENSIM 使用笔记1 --- 语料和向量空间
学术状态抽奖器
NLP技术手札学习手册gensim中文向量序列化教程
GENSIM使用笔记1—语料和向量空间GENSIM使用笔记2—主题模型和相似性查询1本篇说明本篇博客来源于GENSIM官方向导文档的第一章,主要供自己后续的翻阅,并通过分享带给诸位网友一个小小的参照。从字符串到向量在这一小节当中,将会讲述如何通过gensim,将一段文本以向量的形式表示。首先我们看一下我们的基本文档形式:documents=['拍照反光一直是摄影爱好者较为苦恼的问题','尤其是手机
- Python自然语言处理:gensim库的探索与应用
丶本心灬
本文还有配套的精品资源,点击获取简介:本文档介绍了gensim库——一个专为Python设计的开源自然语言处理工具,它支持词向量模型、主题模型、相似度计算、TF-IDF和LSA等核心功能。该库适用于文档相似性和主题建模任务,特别强调其在处理大规模语料库中的高效性和准确性。包含gensim-4.0.0版本的预编译安装包,为64位Windows系统上的Python3.6版本提供便捷安装体验。文档还提供
- MATLAB 自然语言处理入门教程
tyatyatya
MATLAB教程MATLAB下载安装教程matlab自然语言处理开发语言
文章目录前言环境配置一、MATLABNLP工具箱概述二、核心功能与API1.文本数据准备2.特征提取3.文本分类(传统机器学习)4.深度学习文本分类(LSTM)三、实战案例:情感分析四、高级应用1.命名实体识别(NER)2.主题模型(LDA)前言以下是MATLAB自然语言处理(NLP)的入门教程,涵盖基础概念、核心功能。环境配置MATLAB下载安装教程:https://blog.csdn.net/
- 西瓜书【机器学习(周志华)】目录
随机森林404
机器学习机器学习
第一部分:基础概念机器学习概述1.1人工智能与机器学习1.2机器学习分类1.3机器学习应用1.4机器学习常用术语解释模型的评估与选择2.1经验误差与过拟合2.2评估方法2.3性能度量2.4偏差与方差第二部分:核心算法线性模型3.1什么是回归3.2一元线性回归3.3多元线性回归3.4对数几率回归3.5线性判别分析(LDA)3.6多分类学习3.7类别不平衡问题决策树4.1决策树概述4.2ID3算法4.
- 主题分析建模用法介绍
不秃的开发媛
机器学习人工智能
1.主题建模分析介绍主题分析建模(LDA)是一种文本分析方法,用于从大量文本数据中提取潜在的主题或话题,它可以帮助我们理解和概况文本数据集中的内容,并发现其中的相关模式和趋势。在文本分析建模中,文本数据集通常被表示为一个文档——词矩阵,其中每个文档都由一组词语构成,主题模型的目标是通过分析这些文档——词矩阵,将文本数据集中的词语聚类成不同的主题。主题可以理解为概念、主要内容或者感兴趣的话题,在文本
- 降维算法是什么
Nate Hillick
算法python开发语言
降维算法是一种将高维数据映射到低维空间的算法。它的目的是减少数据的维数,从而使得数据可视化、分析和处理更加容易。常见的降维算法包括主成分分析(PCA)、线性判别分析(LDA)和t-SNE。
- 文本主题模型之潜在语义索引(LSI)
多尝试多记录多积累
好文章的搬运工:https://www.cnblogs.com/pinard/p/6805861.html先对矩阵做SVD分解,然后利用V矩阵,计算LSI,LSI得到的文本主题矩阵可以用于文本相似度计算。而计算方法一般是通过余弦相似度。需要选取主题的k值。LSI是最早出现的主题模型了,它的算法原理很简单,一次奇异值分解就可以得到主题模型,同时解决词义的问题,非常漂亮。但是LSI有很多不足,导致它在
- 数据分析案例-基于情感分析+LDA主题分析的上饶市旅游景点分析
艾派森
数据分析信息可视化数据分析数据挖掘python
♂️个人主页:@艾派森的个人主页✍作者简介:Python学习者希望大家多多支持,我们一起进步!如果文章对你有帮助的话,欢迎评论点赞收藏加关注+目录1.项目背景2.数据集介绍
- 基于线性LDA算法对鸢尾花数据集进行分类
东木月
数据分析算法分类数据挖掘
基于线性LDA算法对鸢尾花数据集进行分类1、效果2、流程1、加载数据集2、划分训练集、测试集3、创建模型4、训练模型5、使用LDA算法6、画图3、示例代码#基于线性LDA算法对鸢尾花数据集进行分类#基于线性LDA算法对鸢尾花数据集进行分类importnumpyasnpimportmatplotlib.pyplotaspltfromsklearnimport</
- Windows 图形显示驱动开发-WDDM 2.4功能-GPU 半虚拟化(六)
程序员王马
windows图形显示驱动开发驱动开发windows
为D3D12运行时设置LDA状态为D3D12运行时启用或禁用LDA时,UMD需要将正确的层和节点映射信息返回到运行时。代码流如下所示:D3D12从UMD获取D3D12_CROSS_NODE_SHARING_TIER上限。D3D12通过调用D3DKMTQueryAdapterInfo(KMTQAITYPE_PHYSICALADAPTERCOUNT)从Dxgkrnl获取物理适配器计数。D3D12调用p
- 文本挖掘+情感分析+主题建模+K-Meas聚类+词频统计+词云(景区游客评论情感分析)
请为小H留灯
聚类机器学习支持向量机人工智能深度学习
本文通过情感分析技术对景区游客评论进行深入挖掘,结合数据预处理、情感分类和文本挖掘,分析游客评价与情感倾向。利用朴素贝叶斯和SVM等模型进行情感预测,探讨满意度与情感的关系。通过KMeans聚类和LDA主题分析,提取游客关心的话题,提供优化建议,为未来研究提供方向。1.引言1.1背景与目的1.2旅游业发展与游客评论的重要性2.数据处理与分析2.1数据加载与预处理2.2游客评分与点赞量分析3.评论内
- 《基于文本挖掘的青岛市民宿评论分析系统设计与实现》开题报告
Python数据分析与机器学习
毕业论文/研究报告数据挖掘数据分析人工智能算法
目录一、选题依据:1.研究背景2.理论意义3.现实意义4.国内外研究现状、水平及发展趋势简述(1)国外研究现状(2)国内研究现状(3)发展趋势二、研究内容1.主要研究内容2.研究方法(1)文献研究法(2)数据挖掘法3.技术路线4.实施方案(1)数据采集与预处理(2)设置LDA主题模型(3)情感分析(4)系统集成与可视化5.可行性分析三、主要参考文献一、选题依据:1.研究背景当下,社会经济蓬勃发展,
- 【机器学习与数据挖掘实战】案例15:基于LDA模型的电商产品评论数据情感分析
Francek Chen
机器学习与数据挖掘实战机器学习数据挖掘人工智能LDA主题模型情感分析文本分析python
【作者主页】FrancekChen【专栏介绍】⌈⌈⌈机器学习与数据挖掘实战⌋⌋⌋机器学习是人工智能的一个分支,专注于让计算机系统通过数据学习和改进。它利用统计和计算方法,使模型能够从数据中自动提取特征并做出预测或决策。数据挖掘则是从大型数据集中发现模式、关联和异常的过程,旨在提取有价值的信息和知识。机器学习为数据挖掘提供了强大的分析工具,而数据挖掘则是机器学习应用的重要领域,两者相辅相成,共同推动
- 数据挖掘中特征发现与特征提取的数学原理
调皮的芋头
数据挖掘人工智能AIGC计算机视觉
好的,我将深入研究数据挖掘中特征发现与特征提取的数学原理,涵盖统计学基础、特征工程的数学方法、以及在机器学习和深度学习中的应用。我会整理相关数学公式和理论,包括主成分分析(PCA)、独立成分分析(ICA)、线性判别分析(LDA)、信息增益、互信息、方差分析等统计方法,并结合金融量化交易的实际应用,确保内容既有理论深度,又能落地实践。完成后,我会通知您!1.统计学基础:描述性统计、方差分析、相关性与
- 《人工智能之高维数据降维算法:PCA与LDA深度剖析》
机器学习人工智能
在人工智能与机器学习蓬勃发展的当下,数据处理成为关键环节。高维数据在带来丰富信息的同时,也引入了计算复杂度高、过拟合风险增大以及数据稀疏性等难题。降维算法应运而生,它能将高维数据映射到低维空间,在减少维度的同时最大程度保留关键信息。主成分分析(PCA)与线性判别分析(LDA)作为两种常用的降维算法,在人工智能领域应用广泛。本文将深入探讨它们的原理。PCA:无监督的降维利器核心思想PCA基于最大方差
- 判别分析在R语言中的实现
FgVector
r语言开发语言
判别分析是一种常用的统计方法,用于将样本数据分配到已知类别中。在R语言中,我们可以使用多个包来实现判别分析,例如MASS、caret和lda等。本文将介绍如何使用R语言实现判别分析,并提供相应的源代码。安装和加载所需的包首先,我们需要安装并加载需要的R包。在R控制台中执行以下命令:install.packages("MASS")#安装MASS包install.packages("caret")#安
- LDA主题分析—情感分析案例
rubyw
机器学习数据分析python机器学习
当然可以!以下是一个针对投诉内容进行情感分析的完整案例,包含数据准备、模型训练、情感分析以及结果展示的过程。案例:投诉内容情感分析步骤1:数据准备首先,我们准备一份包含用户投诉内容的数据集。假设数据集是一个CSV文件,包含两列:id和complaint。importpandasaspd#读取数据data=pd.read_csv('complaints.csv')#查看数据data.head()步骤
- 《深度揭秘LDA:开启人工智能降维与分类优化的大门》
前端人工智能算法
在当今人工智能蓬勃发展的时代,数据成为了驱动技术进步的核心要素。随着数据采集和存储技术的飞速发展,我们所面临的数据量不仅日益庞大,其维度也愈发复杂。高维数据虽然蕴含着丰富的信息,但却给机器学习算法带来了一系列严峻的挑战,这便是著名的“维度诅咒”。在众多应对这一难题的技术中,线性判别分析(LDA)脱颖而出,作为一种强大的监督学习降维方法,它在提升分类性能方面发挥着关键作用。一、LDA:核心原理大起底
- java的(PO,VO,TO,BO,DAO,POJO)
Cb123456
VOTOBOPOJODAO
转:
http://www.cnblogs.com/yxnchinahlj/archive/2012/02/24/2366110.html
-------------------------------------------------------------------
O/R Mapping 是 Object Relational Mapping(对象关系映
- spring ioc原理(看完后大家可以自己写一个spring)
aijuans
spring
最近,买了本Spring入门书:spring In Action 。大致浏览了下感觉还不错。就是入门了点。Manning的书还是不错的,我虽然不像哪些只看Manning书的人那样专注于Manning,但怀着崇敬 的心情和激情通览了一遍。又一次接受了IOC 、DI、AOP等Spring核心概念。 先就IOC和DI谈一点我的看法。IO
- MyEclipse 2014中Customize Persperctive设置无效的解决方法
Kai_Ge
MyEclipse2014
高高兴兴下载个MyEclipse2014,发现工具条上多了个手机开发的按钮,心生不爽就想弄掉他!
结果发现Customize Persperctive失效!!
有说更新下就好了,可是国内Myeclipse访问不了,何谈更新...
so~这里提供了更新后的一下jar包,给大家使用!
1、将9个jar复制到myeclipse安装目录\plugins中
2、删除和这9个jar同包名但是版本号较
- SpringMvc上传
120153216
springMVC
@RequestMapping(value = WebUrlConstant.UPLOADFILE)
@ResponseBody
public Map<String, Object> uploadFile(HttpServletRequest request,HttpServletResponse httpresponse) {
try {
//
- Javascript----HTML DOM 事件
何必如此
JavaScripthtmlWeb
HTML DOM 事件允许Javascript在HTML文档元素中注册不同事件处理程序。
事件通常与函数结合使用,函数不会在事件发生前被执行!
注:DOM: 指明使用的 DOM 属性级别。
1.鼠标事件
属性  
- 动态绑定和删除onclick事件
357029540
JavaScriptjquery
因为对JQUERY和JS的动态绑定事件的不熟悉,今天花了好久的时间才把动态绑定和删除onclick事件搞定!现在分享下我的过程。
在我的查询页面,我将我的onclick事件绑定到了tr标签上同时传入当前行(this值)参数,这样可以在点击行上的任意地方时可以选中checkbox,但是在我的某一列上也有一个onclick事件是用于下载附件的,当
- HttpClient|HttpClient请求详解
7454103
apache应用服务器网络协议网络应用Security
HttpClient 是 Apache Jakarta Common 下的子项目,可以用来提供高效的、最新的、功能丰富的支持 HTTP 协议的客户端编程工具包,并且它支持 HTTP 协议最新的版本和建议。本文首先介绍 HTTPClient,然后根据作者实际工作经验给出了一些常见问题的解决方法。HTTP 协议可能是现在 Internet 上使用得最多、最重要的协议了,越来越多的 Java 应用程序需
- 递归 逐层统计树形结构数据
darkranger
数据结构
将集合递归获取树形结构:
/**
*
* 递归获取数据
* @param alist:所有分类
* @param subjname:对应统计的项目名称
* @param pk:对应项目主键
* @param reportList: 最后统计的结果集
* @param count:项目级别
*/
public void getReportVO(Arr
- 访问WEB-INF下使用frameset标签页面出错的原因
aijuans
struts2
<frameset rows="61,*,24" cols="*" framespacing="0" frameborder="no" border="0">
- MAVEN常用命令
avords
Maven库:
http://repo2.maven.org/maven2/
Maven依赖查询:
http://mvnrepository.com/
Maven常用命令: 1. 创建Maven的普通java项目: mvn archetype:create -DgroupId=packageName 
- PHP如果自带一个小型的web服务器就好了
houxinyou
apache应用服务器WebPHP脚本
最近单位用PHP做网站,感觉PHP挺好的,不过有一些地方不太习惯,比如,环境搭建。PHP本身就是一个网站后台脚本,但用PHP做程序时还要下载apache,配置起来也不太很方便,虽然有好多配置好的apache+php+mysq的环境,但用起来总是心里不太舒服,因为我要的只是一个开发环境,如果是真实的运行环境,下个apahe也无所谓,但只是一个开发环境,总有一种杀鸡用牛刀的感觉。如果php自己的程序中
- NoSQL数据库之Redis数据库管理(list类型)
bijian1013
redis数据库NoSQL
3.list类型及操作
List是一个链表结构,主要功能是push、pop、获取一个范围的所有值等等,操作key理解为链表的名字。Redis的list类型其实就是一个每个子元素都是string类型的双向链表。我们可以通过push、pop操作从链表的头部或者尾部添加删除元素,这样list既可以作为栈,又可以作为队列。
&nbs
- 谁在用Hadoop?
bingyingao
hadoop数据挖掘公司应用场景
Hadoop技术的应用已经十分广泛了,而我是最近才开始对它有所了解,它在大数据领域的出色表现也让我产生了兴趣。浏览了他的官网,其中有一个页面专门介绍目前世界上有哪些公司在用Hadoop,这些公司涵盖各行各业,不乏一些大公司如alibaba,ebay,amazon,google,facebook,adobe等,主要用于日志分析、数据挖掘、机器学习、构建索引、业务报表等场景,这更加激发了学习它的热情。
- 【Spark七十六】Spark计算结果存到MySQL
bit1129
mysql
package spark.examples.db
import java.sql.{PreparedStatement, Connection, DriverManager}
import com.mysql.jdbc.Driver
import org.apache.spark.{SparkContext, SparkConf}
object SparkMySQLInteg
- Scala: JVM上的函数编程
bookjovi
scalaerlanghaskell
说Scala是JVM上的函数编程一点也不为过,Scala把面向对象和函数型编程这两种主流编程范式结合了起来,对于熟悉各种编程范式的人而言Scala并没有带来太多革新的编程思想,scala主要的有点在于Java庞大的package优势,这样也就弥补了JVM平台上函数型编程的缺失,MS家.net上已经有了F#,JVM怎么能不跟上呢?
对本人而言
- jar打成exe
bro_feng
java jar exe
今天要把jar包打成exe,jsmooth和exe4j都用了。
遇见几个问题。记录一下。
两个软件都很好使,网上都有图片教程,都挺不错。
首先肯定是要用自己的jre的,不然不能通用,其次别忘了把需要的lib放到classPath中。
困扰我很久的一个问题是,我自己打包成功后,在一个同事的没有装jdk的电脑上运行,就是不行,报错jvm.dll为无效的windows映像,如截图
最后发现
- 读《研磨设计模式》-代码笔记-策略模式-Strategy
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
策略模式定义了一系列的算法,并将每一个算法封装起来,而且使它们还可以相互替换。策略模式让算法独立于使用它的客户而独立变化
简单理解:
1、将不同的策略提炼出一个共同接口。这是容易的,因为不同的策略,只是算法不同,需要传递的参数
- cmd命令值cvfM命令
chenyu19891124
cmd
cmd命令还真是强大啊。今天发现jar -cvfM aa.rar @aaalist 就这行命令可以根据aaalist取出相应的文件
例如:
在d:\workspace\prpall\test.java 有这样一个文件,现在想要将这个文件打成一个包。运行如下命令即可比如在d:\wor
- OpenJWeb(1.8) Java Web应用快速开发平台
comsci
java框架Web项目管理企业应用
OpenJWeb(1.8) Java Web应用快速开发平台的作者是我们技术联盟的成员,他最近推出了新版本的快速应用开发平台 OpenJWeb(1.8),我帮他做做宣传
OpenJWeb快速开发平台以快速开发为核心,整合先进的java 开源框架,本着自主开发+应用集成相结合的原则,旨在为政府、企事业单位、软件公司等平台用户提供一个架构透
- Python 报错:IndentationError: unexpected indent
daizj
pythontab空格缩进
IndentationError: unexpected indent 是缩进的问题,也有可能是tab和空格混用啦
Python开发者有意让违反了缩进规则的程序不能通过编译,以此来强制程序员养成良好的编程习惯。并且在Python语言里,缩进而非花括号或者某种关键字,被用于表示语句块的开始和退出。增加缩进表示语句块的开
- HttpClient 超时设置
dongwei_6688
httpclient
HttpClient中的超时设置包含两个部分:
1. 建立连接超时,是指在httpclient客户端和服务器端建立连接过程中允许的最大等待时间
2. 读取数据超时,是指在建立连接后,等待读取服务器端的响应数据时允许的最大等待时间
在HttpClient 4.x中如下设置:
HttpClient httpclient = new DefaultHttpC
- 小鱼与波浪
dcj3sjt126com
一条小鱼游出水面看蓝天,偶然间遇到了波浪。 小鱼便与波浪在海面上游戏,随着波浪上下起伏、汹涌前进。 小鱼在波浪里兴奋得大叫:“你每天都过着这么刺激的生活吗?简直太棒了。” 波浪说:“岂只每天过这样的生活,几乎每一刻都这么刺激!还有更刺激的,要有潮汐变化,或者狂风暴雨,那才是兴奋得心脏都会跳出来。” 小鱼说:“真希望我也能变成一个波浪,每天随着风雨、潮汐流动,不知道有多么好!” 很快,小鱼
- Error Code: 1175 You are using safe update mode and you tried to update a table
dcj3sjt126com
mysql
快速高效用:SET SQL_SAFE_UPDATES = 0;下面的就不要看了!
今日用MySQL Workbench进行数据库的管理更新时,执行一个更新的语句碰到以下错误提示:
Error Code: 1175
You are using safe update mode and you tried to update a table without a WHERE that
- 枚举类型详细介绍及方法定义
gaomysion
enumjavaee
转发
http://developer.51cto.com/art/201107/275031.htm
枚举其实就是一种类型,跟int, char 这种差不多,就是定义变量时限制输入的,你只能够赋enum里面规定的值。建议大家可以看看,这两篇文章,《java枚举类型入门》和《C++的中的结构体和枚举》,供大家参考。
枚举类型是JDK5.0的新特征。Sun引进了一个全新的关键字enum
- Merge Sorted Array
hcx2013
array
Given two sorted integer arrays nums1 and nums2, merge nums2 into nums1 as one sorted array.
Note:You may assume that nums1 has enough space (size that is
- Expression Language 3.0新特性
jinnianshilongnian
el 3.0
Expression Language 3.0表达式语言规范最终版从2013-4-29发布到现在已经非常久的时间了;目前如Tomcat 8、Jetty 9、GlasshFish 4已经支持EL 3.0。新特性包括:如字符串拼接操作符、赋值、分号操作符、对象方法调用、Lambda表达式、静态字段/方法调用、构造器调用、Java8集合操作。目前Glassfish 4/Jetty实现最好,对大多数新特性
- 超越算法来看待个性化推荐
liyonghui160com
超越算法来看待个性化推荐
一提到个性化推荐,大家一般会想到协同过滤、文本相似等推荐算法,或是更高阶的模型推荐算法,百度的张栋说过,推荐40%取决于UI、30%取决于数据、20%取决于背景知识,虽然本人不是很认同这种比例,但推荐系统中,推荐算法起的作用起的作用是非常有限的。
就像任何
- 写给Javascript初学者的小小建议
pda158
JavaScript
一般初学JavaScript的时候最头痛的就是浏览器兼容问题。在Firefox下面好好的代码放到IE就不能显示了,又或者是在IE能正常显示的代码在firefox又报错了。 如果你正初学JavaScript并有着一样的处境的话建议你:初学JavaScript的时候无视DOM和BOM的兼容性,将更多的时间花在 了解语言本身(ECMAScript)。只在特定浏览器编写代码(Chrome/Fi
- Java 枚举
ShihLei
javaenum枚举
注:文章内容大量借鉴使用网上的资料,可惜没有记录参考地址,只能再传对作者说声抱歉并表示感谢!
一 基础 1)语法
枚举类型只能有私有构造器(这样做可以保证客户代码没有办法新建一个enum的实例)
枚举实例必须最先定义
2)特性
&nb
- Java SE 6 HotSpot虚拟机的垃圾回收机制
uuhorse
javaHotSpotGC垃圾回收VM
官方资料,关于Java SE 6 HotSpot虚拟机的garbage Collection,非常全,英文。
http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html
Java SE 6 HotSpot[tm] Virtual Machine Garbage Collection Tuning
&