Pandas检查dataFrame中的NaN

NaN代表Not A Number,是表示数据中缺失值的常用方法之一。它是一种特殊的浮点值,不能转换为浮点数以外的任何其他类型。

NaN值是数据分析中的主要问题之一,为了得到理想的结果,对NaN进行处理是非常必要的。

检查Pandas DataFrame中的NaN值

在Pandas DataFrame中检查NaN的方法如下:

  • 使用isnull().values.any()方法检查NaN
  • 使用isnull().sum()方法统计NaN
  • 使用isnull().sum().any()方法检查NaN
  • 使用isnull().sum().sum()方法统计NaN

方法1:使用isnull().values.any()方法

# importing libraries
import pandas as pd
import numpy as np


num = {'Integers': [10, 15, 30, 40, 55, np.nan,
					75, np.nan, 90, 150, np.nan]}

# Create the dataframe
df = pd.DataFrame(num, columns=['Integers'])

# Applying the method
check_nan = df['Integers'].isnull().values.any()

# printing the result
print(check_nan)
# 输出 True

可以通过从isnull().values.any()中删除.values.any()来获得NaN值所在的确切位置。

df['Integers'].isnull()
0     False
1     False
2     False
3     False
4     False
5      True
6     False
7      True
8     False
9     False
10     True
Name: Integers, dtype: bool

方法2:使用isnull().sum()方法

# importing libraries
import pandas as pd
import numpy as np


num = {'Integers': [10, 15, 30, 40, 55, np.nan,
					75, np.nan, 90, 150, np.nan]}

# Create the dataframe
df = pd.DataFrame(num, columns=['Integers'])

# applying the method
count_nan = df['Integers'].isnull().sum()

# printing the number of values present
# in the column
print('Number of NaN values present: ' + str(count_nan))
Number of NaN values present: 3

方法3:使用isnull().sum().any()方法

# importing libraries
import pandas as pd
import numpy as np

nums = {'Integers_1': [10, 15, 30, 40, 55, np.nan, 75,
					np.nan, 90, 150, np.nan],
		'Integers_2': [np.nan, 21, 22, 23, np.nan, 24, 25,
					np.nan, 26, np.nan, np.nan]}

# Create the dataframe
df = pd.DataFrame(nums, columns=['Integers_1', 'Integers_2'])

# applying the method
nan_in_df = df.isnull().sum().any()

# Print the dataframe
print(nan_in_df)
# 输出 True

可以通过从isnull().sum().any()中删除.sum().any()来获得NaN值所在的确切位置。

方法4:使用isnull().sum().sum()方法

# importing libraries
import pandas as pd
import numpy as np

nums = {'Integers_1': [10, 15, 30, 40, 55, np.nan, 75,
					np.nan, 90, 150, np.nan],
		'Integers_2': [np.nan, 21, 22, 23, np.nan, 24, 25,
					np.nan, 26, np.nan, np.nan]}

# Create the dataframe
df = pd.DataFrame(nums, columns=['Integers_1', 'Integers_2'])

# applying the method
nan_in_df = df.isnull().sum().sum()

# printing the number of values present in
# the whole dataframe
print('Number of NaN values present: ' + str(nan_in_df))
Number of NaN values present: 8

参考

  • https://www.geeksforgeeks.org/check-for-nan-in-pandas-dataframe/

你可能感兴趣的:(#,Pandas,pandas,python,Nan)