import paddle.nn as nn
import paddle.nn.functional as F
#from basicsr.models.archs.local_arch import Local_Base
class LayerNormFunction(paddle.autograd.PyLayer):
@staticmethod
def forward(ctx, x, weight, bias, eps):
ctx.eps = eps
N, C, H, W = x.shape
mu = x.mean(1, keepdim=True)
var = (x - mu).pow(2).mean(1, keepdim=True)
y = (x - mu) / (var + eps).sqrt()
ctx.save_for_backward(y, var, weight)
#y = weight.view(1, C, 1, 1) * y + bias.view(1, C, 1, 1)
y = paddle.reshape(weight, [1, C, 1, 1]) * y + paddle.reshape(bias, [1, C, 1, 1])
return y
@staticmethod
def backward(ctx, grad_output):
eps = ctx.eps
# N, C, H, W = grad_output.size()
N, C, H, W = grad_output.shape
y, var, weight = ctx.saved_tensor()
g = grad_output * paddle.reshape(weight, [1, C, 1, 1])
mean_g = g.mean(axis=1, keepdim=True)
mean_gy = (g * y).mean(axis=1, keepdim=True)
gx = 1. / paddle.sqrt(var + eps) * (g - y * mean_gy - mean_g)
#return gx, (grad_output * y).sum(axis=3).sum(axis=2).sum(axis=0), grad_output.sum(axis=3).sum(axis=2).sum(axis=0), None
return gx, (grad_output * y).sum(axis=3).sum(axis=2).sum(axis=0), grad_output.sum(axis=3).sum(axis=2).sum(axis=0)
class LayerNorm2d(nn.Layer):
def __init__(self, channels, eps=1e-6):
super(LayerNorm2d, self).__init__()
self.weight = self.create_parameter(shape=[channels])
self.add_parameter("weight", self.weight)
self.bias = self.create_parameter(shape=[channels])
self.add_parameter("bias", self.bias)
#self.register_parameter('weight', nn.Parameter(torch.ones(channels)))
#self.register_parameter('bias', nn.Parameter(torch.zeros(channels)))
self.eps = eps
def forward(self, x):
return LayerNormFunction.apply(x, self.weight, self.bias, self.eps)
class SimpleGate(nn.Layer):
def forward(self, x):
x1, x2 = x.chunk(2, axis=1)
return x1 * x2
class NAFBlock(nn.Layer):
def __init__(self, c, DW_Expand=2, FFN_Expand=2, drop_out_rate=0.):
super().__init__()
dw_channel = c * DW_Expand
self.conv1 = nn.Conv2D(c, dw_channel, 1, padding=0, stride=1, groups=1, bias_attr=True)
self.conv2 = nn.Conv2D(dw_channel, dw_channel, 3, padding=1, stride=1, groups=dw_channel,
bias_attr=True)
self.conv3 = nn.Conv2D(dw_channel // 2, c, 1, padding=0, stride=1, groups=1, bias_attr=True)
# Simplified Channel Attention
self.sca = nn.Sequential(
nn.AdaptiveAvgPool2D(1),
nn.Conv2D(in_channels=dw_channel // 2, out_channels=dw_channel // 2, kernel_size=1, padding=0, stride=1,
groups=1, bias_attr=True),
)
# SimpleGate
self.sg = SimpleGate()
ffn_channel = FFN_Expand * c
self.conv4 = nn.Conv2D(c, ffn_channel, 1, padding=0, stride=1, groups=1, bias_attr=True)
self.conv5 = nn.Conv2D(ffn_channel // 2, c, 1, padding=0, stride=1, groups=1, bias_attr=True)
self.norm1 = LayerNorm2d(c)
self.norm2 = LayerNorm2d(c)
self.dropout1 = nn.Dropout(drop_out_rate) if drop_out_rate > 0. else nn.Identity()
self.dropout2 = nn.Dropout(drop_out_rate) if drop_out_rate > 0. else nn.Identity()
# self.beta = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True)
# self.gamma = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True)
self.beta = self.create_parameter(shape=[1, c, 1, 1])
self.add_parameter("beta", self.beta)
self.gamma = self.create_parameter(shape=[1, c, 1, 1])
self.add_parameter("gamma", self.gamma)
def forward(self, inp):
x = inp
x = self.norm1(x)
x = self.conv1(x)
x = self.conv2(x)
x = self.sg(x)
x = x * self.sca(x)
x = self.conv3(x)
x = self.dropout1(x)
y = inp + x * self.beta
x = self.conv4(self.norm2(y))
x = self.sg(x)
x = self.conv5(x)
x = self.dropout2(x)
return y + x * self.gamma
class NAFNet(nn.Layer):
def __init__(self, img_channel=3, width=16, middle_blk_num=1, enc_blk_nums=[], dec_blk_nums=[]):
super().__init__()
self.intro = nn.Conv2D(img_channel,width,3,padding=1,stride=1,groups=1,bias_attr=True)
self.ending = nn.Conv2D(width,img_channel,3, padding=1, stride=1, groups=1,bias_attr=True)
self.encoders = nn.LayerList()
self.decoders = nn.LayerList()
self.middle_blks = nn.LayerList()
self.ups = nn.LayerList()
self.downs = nn.LayerList()
chan = width
for num in enc_blk_nums:
self.encoders.append(
nn.Sequential(
*[NAFBlock(chan) for _ in range(num)]
)
)
self.downs.append(
nn.Conv2D(chan, 2*chan, 2, 2)
)
chan = chan * 2
self.middle_blks = \
nn.Sequential(
*[NAFBlock(chan) for _ in range(middle_blk_num)]
)
for num in dec_blk_nums:
self.ups.append(
nn.Sequential(
nn.Conv2D(chan, chan * 2, 1, bias_attr=False),
nn.PixelShuffle(2)
)
)
chan = chan // 2
self.decoders.append(
nn.Sequential(
*[NAFBlock(chan) for _ in range(num)]
)
)
self.padder_size = 2 ** len(self.encoders)
def forward(self, inp):
B, C, H, W = inp.shape
inp = self.check_image_size(inp)
x = self.intro(inp)
encs = []
for encoder, down in zip(self.encoders, self.downs):
x = encoder(x)
encs.append(x)
x = down(x)
x = self.middle_blks(x)
for decoder, up, enc_skip in zip(self.decoders, self.ups, encs[::-1]):
x = up(x)
x = x + enc_skip
x = decoder(x)
x = self.ending(x)
x = x + inp
return x[:, :, :H, :W]
def check_image_size(self, x):
_, _, h, w = x.shape
mod_pad_h = (self.padder_size - h % self.padder_size) % self.padder_size
mod_pad_w = (self.padder_size - w % self.padder_size) % self.padder_size
x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h))
return x
# class NAFNetLocal(Local_Base, NAFNet):
# def __init__(self, *args, train_size=(1, 3, 256, 256), fast_imp=False, **kwargs):
# Local_Base.__init__(self)
# NAFNet.__init__(self, *args, **kwargs)
# N, C, H, W = train_size
# base_size = (int(H * 1.5), int(W * 1.5))
# self.eval()
# with torch.no_grad():
# self.convert(base_size=base_size, train_size=train_size, fast_imp=fast_imp)
if __name__ == "__main__":
img_channel = 3
width = 32
enc_blks = [2, 2, 2, 20]
middle_blk_num = 2
dec_blks = [2, 2, 2, 2]
model = NAFNet(img_channel=img_channel, width=width, middle_blk_num=middle_blk_num,
enc_blk_nums=enc_blks, dec_blk_nums=dec_blks)
paddle.summary(model, (1, 3, 384, 384))
网络结构参数为:
--------------------------------------------------------------------------------
Layer (type) Input Shape Output Shape Param #
================================================================================
Conv2D-1 [[1, 3, 384, 384]] [1, 32, 384, 384] 896
LayerNorm2d-1 [[1, 32, 384, 384]] [1, 32, 384, 384] 64
Conv2D-3 [[1, 32, 384, 384]] [1, 64, 384, 384] 2,112
Conv2D-4 [[1, 64, 384, 384]] [1, 64, 384, 384] 640
SimpleGate-1 [[1, 64, 384, 384]] [1, 32, 384, 384] 0
AdaptiveAvgPool2D-1 [[1, 32, 384, 384]] [1, 32, 1, 1] 0
Conv2D-6 [[1, 32, 1, 1]] [1, 32, 1, 1] 1,056
Conv2D-5 [[1, 32, 384, 384]] [1, 32, 384, 384] 1,056
Identity-1 [[1, 32, 384, 384]] [1, 32, 384, 384] 0
LayerNorm2d-2 [[1, 32, 384, 384]] [1, 32, 384, 384] 64
Conv2D-7 [[1, 32, 384, 384]] [1, 64, 384, 384] 2,112
Conv2D-8 [[1, 32, 384, 384]] [1, 32, 384, 384] 1,056
Identity-2 [[1, 32, 384, 384]] [1, 32, 384, 384] 0
NAFBlock-1 [[1, 32, 384, 384]] [1, 32, 384, 384] 64
LayerNorm2d-3 [[1, 32, 384, 384]] [1, 32, 384, 384] 64
Conv2D-9 [[1, 32, 384, 384]] [1, 64, 384, 384] 2,112
Conv2D-10 [[1, 64, 384, 384]] [1, 64, 384, 384] 640
SimpleGate-2 [[1, 64, 384, 384]] [1, 32, 384, 384] 0
AdaptiveAvgPool2D-2 [[1, 32, 384, 384]] [1, 32, 1, 1] 0
Conv2D-12 [[1, 32, 1, 1]] [1, 32, 1, 1] 1,056
Conv2D-11 [[1, 32, 384, 384]] [1, 32, 384, 384] 1,056
Identity-3 [[1, 32, 384, 384]] [1, 32, 384, 384] 0
LayerNorm2d-4 [[1, 32, 384, 384]] [1, 32, 384, 384] 64
Conv2D-13 [[1, 32, 384, 384]] [1, 64, 384, 384] 2,112
Conv2D-14 [[1, 32, 384, 384]] [1, 32, 384, 384] 1,056
Identity-4 [[1, 32, 384, 384]] [1, 32, 384, 384] 0
NAFBlock-2 [[1, 32, 384, 384]] [1, 32, 384, 384] 64
Conv2D-15 [[1, 32, 384, 384]] [1, 64, 192, 192] 8,256
LayerNorm2d-5 [[1, 64, 192, 192]] [1, 64, 192, 192] 128
Conv2D-16 [[1, 64, 192, 192]] [1, 128, 192, 192] 8,320
Conv2D-17 [[1, 128, 192, 192]] [1, 128, 192, 192] 1,280
SimpleGate-3 [[1, 128, 192, 192]] [1, 64, 192, 192] 0
AdaptiveAvgPool2D-3 [[1, 64, 192, 192]] [1, 64, 1, 1] 0
Conv2D-19 [[1, 64, 1, 1]] [1, 64, 1, 1] 4,160
Conv2D-18 [[1, 64, 192, 192]] [1, 64, 192, 192] 4,160
Identity-5 [[1, 64, 192, 192]] [1, 64, 192, 192] 0
LayerNorm2d-6 [[1, 64, 192, 192]] [1, 64, 192, 192] 128
Conv2D-20 [[1, 64, 192, 192]] [1, 128, 192, 192] 8,320
Conv2D-21 [[1, 64, 192, 192]] [1, 64, 192, 192] 4,160
Identity-6 [[1, 64, 192, 192]] [1, 64, 192, 192] 0
NAFBlock-3 [[1, 64, 192, 192]] [1, 64, 192, 192] 128
LayerNorm2d-7 [[1, 64, 192, 192]] [1, 64, 192, 192] 128
Conv2D-22 [[1, 64, 192, 192]] [1, 128, 192, 192] 8,320
Conv2D-23 [[1, 128, 192, 192]] [1, 128, 192, 192] 1,280
SimpleGate-4 [[1, 128, 192, 192]] [1, 64, 192, 192] 0
AdaptiveAvgPool2D-4 [[1, 64, 192, 192]] [1, 64, 1, 1] 0
Conv2D-25 [[1, 64, 1, 1]] [1, 64, 1, 1] 4,160
Conv2D-24 [[1, 64, 192, 192]] [1, 64, 192, 192] 4,160
Identity-7 [[1, 64, 192, 192]] [1, 64, 192, 192] 0
LayerNorm2d-8 [[1, 64, 192, 192]] [1, 64, 192, 192] 128
Conv2D-26 [[1, 64, 192, 192]] [1, 128, 192, 192] 8,320
Conv2D-27 [[1, 64, 192, 192]] [1, 64, 192, 192] 4,160
Identity-8 [[1, 64, 192, 192]] [1, 64, 192, 192] 0
NAFBlock-4 [[1, 64, 192, 192]] [1, 64, 192, 192] 128
Conv2D-28 [[1, 64, 192, 192]] [1, 128, 96, 96] 32,896
LayerNorm2d-9 [[1, 128, 96, 96]] [1, 128, 96, 96] 256
Conv2D-29 [[1, 128, 96, 96]] [1, 256, 96, 96] 33,024
Conv2D-30 [[1, 256, 96, 96]] [1, 256, 96, 96] 2,560
SimpleGate-5 [[1, 256, 96, 96]] [1, 128, 96, 96] 0
AdaptiveAvgPool2D-5 [[1, 128, 96, 96]] [1, 128, 1, 1] 0
Conv2D-32 [[1, 128, 1, 1]] [1, 128, 1, 1] 16,512
Conv2D-31 [[1, 128, 96, 96]] [1, 128, 96, 96] 16,512
Identity-9 [[1, 128, 96, 96]] [1, 128, 96, 96] 0
LayerNorm2d-10 [[1, 128, 96, 96]] [1, 128, 96, 96] 256
Conv2D-33 [[1, 128, 96, 96]] [1, 256, 96, 96] 33,024
Conv2D-34 [[1, 128, 96, 96]] [1, 128, 96, 96] 16,512
Identity-10 [[1, 128, 96, 96]] [1, 128, 96, 96] 0
NAFBlock-5 [[1, 128, 96, 96]] [1, 128, 96, 96] 256
LayerNorm2d-11 [[1, 128, 96, 96]] [1, 128, 96, 96] 256
Conv2D-35 [[1, 128, 96, 96]] [1, 256, 96, 96] 33,024
Conv2D-36 [[1, 256, 96, 96]] [1, 256, 96, 96] 2,560
SimpleGate-6 [[1, 256, 96, 96]] [1, 128, 96, 96] 0
AdaptiveAvgPool2D-6 [[1, 128, 96, 96]] [1, 128, 1, 1] 0
Conv2D-38 [[1, 128, 1, 1]] [1, 128, 1, 1] 16,512
Conv2D-37 [[1, 128, 96, 96]] [1, 128, 96, 96] 16,512
Identity-11 [[1, 128, 96, 96]] [1, 128, 96, 96] 0
LayerNorm2d-12 [[1, 128, 96, 96]] [1, 128, 96, 96] 256
Conv2D-39 [[1, 128, 96, 96]] [1, 256, 96, 96] 33,024
Conv2D-40 [[1, 128, 96, 96]] [1, 128, 96, 96] 16,512
Identity-12 [[1, 128, 96, 96]] [1, 128, 96, 96] 0
NAFBlock-6 [[1, 128, 96, 96]] [1, 128, 96, 96] 256
Conv2D-41 [[1, 128, 96, 96]] [1, 256, 48, 48] 131,328
LayerNorm2d-13 [[1, 256, 48, 48]] [1, 256, 48, 48] 512
Conv2D-42 [[1, 256, 48, 48]] [1, 512, 48, 48] 131,584
Conv2D-43 [[1, 512, 48, 48]] [1, 512, 48, 48] 5,120
SimpleGate-7 [[1, 512, 48, 48]] [1, 256, 48, 48] 0
AdaptiveAvgPool2D-7 [[1, 256, 48, 48]] [1, 256, 1, 1] 0
Conv2D-45 [[1, 256, 1, 1]] [1, 256, 1, 1] 65,792
Conv2D-44 [[1, 256, 48, 48]] [1, 256, 48, 48] 65,792
Identity-13 [[1, 256, 48, 48]] [1, 256, 48, 48] 0
LayerNorm2d-14 [[1, 256, 48, 48]] [1, 256, 48, 48] 512
Conv2D-46 [[1, 256, 48, 48]] [1, 512, 48, 48] 131,584
Conv2D-47 [[1, 256, 48, 48]] [1, 256, 48, 48] 65,792
Identity-14 [[1, 256, 48, 48]] [1, 256, 48, 48] 0
NAFBlock-7 [[1, 256, 48, 48]] [1, 256, 48, 48] 512
LayerNorm2d-15 [[1, 256, 48, 48]] [1, 256, 48, 48] 512
Conv2D-48 [[1, 256, 48, 48]] [1, 512, 48, 48] 131,584
Conv2D-49 [[1, 512, 48, 48]] [1, 512, 48, 48] 5,120
SimpleGate-8 [[1, 512, 48, 48]] [1, 256, 48, 48] 0
AdaptiveAvgPool2D-8 [[1, 256, 48, 48]] [1, 256, 1, 1] 0
Conv2D-51 [[1, 256, 1, 1]] [1, 256, 1, 1] 65,792
Conv2D-50 [[1, 256, 48, 48]] [1, 256, 48, 48] 65,792
Identity-15 [[1, 256, 48, 48]] [1, 256, 48, 48] 0
LayerNorm2d-16 [[1, 256, 48, 48]] [1, 256, 48, 48] 512
Conv2D-52 [[1, 256, 48, 48]] [1, 512, 48, 48] 131,584
Conv2D-53 [[1, 256, 48, 48]] [1, 256, 48, 48] 65,792
Identity-16 [[1, 256, 48, 48]] [1, 256, 48, 48] 0
NAFBlock-8 [[1, 256, 48, 48]] [1, 256, 48, 48] 512
LayerNorm2d-17 [[1, 256, 48, 48]] [1, 256, 48, 48] 512
Conv2D-54 [[1, 256, 48, 48]] [1, 512, 48, 48] 131,584
Conv2D-55 [[1, 512, 48, 48]] [1, 512, 48, 48] 5,120
SimpleGate-9 [[1, 512, 48, 48]] [1, 256, 48, 48] 0
AdaptiveAvgPool2D-9 [[1, 256, 48, 48]] [1, 256, 1, 1] 0
Conv2D-57 [[1, 256, 1, 1]] [1, 256, 1, 1] 65,792
Conv2D-56 [[1, 256, 48, 48]] [1, 256, 48, 48] 65,792
Identity-17 [[1, 256, 48, 48]] [1, 256, 48, 48] 0
LayerNorm2d-18 [[1, 256, 48, 48]] [1, 256, 48, 48] 512
Conv2D-58 [[1, 256, 48, 48]] [1, 512, 48, 48] 131,584
Conv2D-59 [[1, 256, 48, 48]] [1, 256, 48, 48] 65,792
Identity-18 [[1, 256, 48, 48]] [1, 256, 48, 48] 0
NAFBlock-9 [[1, 256, 48, 48]] [1, 256, 48, 48] 512
LayerNorm2d-19 [[1, 256, 48, 48]] [1, 256, 48, 48] 512
Conv2D-60 [[1, 256, 48, 48]] [1, 512, 48, 48] 131,584
Conv2D-61 [[1, 512, 48, 48]] [1, 512, 48, 48] 5,120
SimpleGate-10 [[1, 512, 48, 48]] [1, 256, 48, 48] 0
AdaptiveAvgPool2D-10 [[1, 256, 48, 48]] [1, 256, 1, 1] 0
Conv2D-63 [[1, 256, 1, 1]] [1, 256, 1, 1] 65,792
Conv2D-62 [[1, 256, 48, 48]] [1, 256, 48, 48] 65,792
Identity-19 [[1, 256, 48, 48]] [1, 256, 48, 48] 0
LayerNorm2d-20 [[1, 256, 48, 48]] [1, 256, 48, 48] 512
Conv2D-64 [[1, 256, 48, 48]] [1, 512, 48, 48] 131,584
Conv2D-65 [[1, 256, 48, 48]] [1, 256, 48, 48] 65,792
Identity-20 [[1, 256, 48, 48]] [1, 256, 48, 48] 0
NAFBlock-10 [[1, 256, 48, 48]] [1, 256, 48, 48] 512
LayerNorm2d-21 [[1, 256, 48, 48]] [1, 256, 48, 48] 512
Conv2D-66 [[1, 256, 48, 48]] [1, 512, 48, 48] 131,584
Conv2D-67 [[1, 512, 48, 48]] [1, 512, 48, 48] 5,120
SimpleGate-11 [[1, 512, 48, 48]] [1, 256, 48, 48] 0
AdaptiveAvgPool2D-11 [[1, 256, 48, 48]] [1, 256, 1, 1] 0
Conv2D-69 [[1, 256, 1, 1]] [1, 256, 1, 1] 65,792
Conv2D-68 [[1, 256, 48, 48]] [1, 256, 48, 48] 65,792
Identity-21 [[1, 256, 48, 48]] [1, 256, 48, 48] 0
LayerNorm2d-22 [[1, 256, 48, 48]] [1, 256, 48, 48] 512
Conv2D-70 [[1, 256, 48, 48]] [1, 512, 48, 48] 131,584
Conv2D-71 [[1, 256, 48, 48]] [1, 256, 48, 48] 65,792
Identity-22 [[1, 256, 48, 48]] [1, 256, 48, 48] 0
NAFBlock-11 [[1, 256, 48, 48]] [1, 256, 48, 48] 512
LayerNorm2d-23 [[1, 256, 48, 48]] [1, 256, 48, 48] 512
Conv2D-72 [[1, 256, 48, 48]] [1, 512, 48, 48] 131,584
Conv2D-73 [[1, 512, 48, 48]] [1, 512, 48, 48] 5,120
SimpleGate-12 [[1, 512, 48, 48]] [1, 256, 48, 48] 0
AdaptiveAvgPool2D-12 [[1, 256, 48, 48]] [1, 256, 1, 1] 0
Conv2D-75 [[1, 256, 1, 1]] [1, 256, 1, 1] 65,792
Conv2D-74 [[1, 256, 48, 48]] [1, 256, 48, 48] 65,792
Identity-23 [[1, 256, 48, 48]] [1, 256, 48, 48] 0
LayerNorm2d-24 [[1, 256, 48, 48]] [1, 256, 48, 48] 512
Conv2D-76 [[1, 256, 48, 48]] [1, 512, 48, 48] 131,584
Conv2D-77 [[1, 256, 48, 48]] [1, 256, 48, 48] 65,792
Identity-24 [[1, 256, 48, 48]] [1, 256, 48, 48] 0
NAFBlock-12 [[1, 256, 48, 48]] [1, 256, 48, 48] 512
LayerNorm2d-25 [[1, 256, 48, 48]] [1, 256, 48, 48] 512
Conv2D-78 [[1, 256, 48, 48]] [1, 512, 48, 48] 131,584
Conv2D-79 [[1, 512, 48, 48]] [1, 512, 48, 48] 5,120
SimpleGate-13 [[1, 512, 48, 48]] [1, 256, 48, 48] 0
AdaptiveAvgPool2D-13 [[1, 256, 48, 48]] [1, 256, 1, 1] 0
Conv2D-81 [[1, 256, 1, 1]] [1, 256, 1, 1] 65,792
Conv2D-80 [[1, 256, 48, 48]] [1, 256, 48, 48] 65,792
Identity-25 [[1, 256, 48, 48]] [1, 256, 48, 48] 0
LayerNorm2d-26 [[1, 256, 48, 48]] [1, 256, 48, 48] 512
Conv2D-82 [[1, 256, 48, 48]] [1, 512, 48, 48] 131,584
Conv2D-83 [[1, 256, 48, 48]] [1, 256, 48, 48] 65,792
Identity-26 [[1, 256, 48, 48]] [1, 256, 48, 48] 0
NAFBlock-13 [[1, 256, 48, 48]] [1, 256, 48, 48] 512
LayerNorm2d-27 [[1, 256, 48, 48]] [1, 256, 48, 48] 512
Conv2D-84 [[1, 256, 48, 48]] [1, 512, 48, 48] 131,584
Conv2D-85 [[1, 512, 48, 48]] [1, 512, 48, 48] 5,120
SimpleGate-14 [[1, 512, 48, 48]] [1, 256, 48, 48] 0
AdaptiveAvgPool2D-14 [[1, 256, 48, 48]] [1, 256, 1, 1] 0
Conv2D-87 [[1, 256, 1, 1]] [1, 256, 1, 1] 65,792
Conv2D-86 [[1, 256, 48, 48]] [1, 256, 48, 48] 65,792
Identity-27 [[1, 256, 48, 48]] [1, 256, 48, 48] 0
LayerNorm2d-28 [[1, 256, 48, 48]] [1, 256, 48, 48] 512
Conv2D-88 [[1, 256, 48, 48]] [1, 512, 48, 48] 131,584
Conv2D-89 [[1, 256, 48, 48]] [1, 256, 48, 48] 65,792
Identity-28 [[1, 256, 48, 48]] [1, 256, 48, 48] 0
NAFBlock-14 [[1, 256, 48, 48]] [1, 256, 48, 48] 512
LayerNorm2d-29 [[1, 256, 48, 48]] [1, 256, 48, 48] 512
Conv2D-90 [[1, 256, 48, 48]] [1, 512, 48, 48] 131,584
Conv2D-91 [[1, 512, 48, 48]] [1, 512, 48, 48] 5,120
SimpleGate-15 [[1, 512, 48, 48]] [1, 256, 48, 48] 0
AdaptiveAvgPool2D-15 [[1, 256, 48, 48]] [1, 256, 1, 1] 0
Conv2D-93 [[1, 256, 1, 1]] [1, 256, 1, 1] 65,792
Conv2D-92 [[1, 256, 48, 48]] [1, 256, 48, 48] 65,792
Identity-29 [[1, 256, 48, 48]] [1, 256, 48, 48] 0
LayerNorm2d-30 [[1, 256, 48, 48]] [1, 256, 48, 48] 512
Conv2D-94 [[1, 256, 48, 48]] [1, 512, 48, 48] 131,584
Conv2D-95 [[1, 256, 48, 48]] [1, 256, 48, 48] 65,792
Identity-30 [[1, 256, 48, 48]] [1, 256, 48, 48] 0
NAFBlock-15 [[1, 256, 48, 48]] [1, 256, 48, 48] 512
LayerNorm2d-31 [[1, 256, 48, 48]] [1, 256, 48, 48] 512
Conv2D-96 [[1, 256, 48, 48]] [1, 512, 48, 48] 131,584
Conv2D-97 [[1, 512, 48, 48]] [1, 512, 48, 48] 5,120
SimpleGate-16 [[1, 512, 48, 48]] [1, 256, 48, 48] 0
AdaptiveAvgPool2D-16 [[1, 256, 48, 48]] [1, 256, 1, 1] 0
Conv2D-99 [[1, 256, 1, 1]] [1, 256, 1, 1] 65,792
Conv2D-98 [[1, 256, 48, 48]] [1, 256, 48, 48] 65,792
Identity-31 [[1, 256, 48, 48]] [1, 256, 48, 48] 0
LayerNorm2d-32 [[1, 256, 48, 48]] [1, 256, 48, 48] 512
Conv2D-100 [[1, 256, 48, 48]] [1, 512, 48, 48] 131,584
Conv2D-101 [[1, 256, 48, 48]] [1, 256, 48, 48] 65,792
Identity-32 [[1, 256, 48, 48]] [1, 256, 48, 48] 0
NAFBlock-16 [[1, 256, 48, 48]] [1, 256, 48, 48] 512
LayerNorm2d-33 [[1, 256, 48, 48]] [1, 256, 48, 48] 512
Conv2D-102 [[1, 256, 48, 48]] [1, 512, 48, 48] 131,584
Conv2D-103 [[1, 512, 48, 48]] [1, 512, 48, 48] 5,120
SimpleGate-17 [[1, 512, 48, 48]] [1, 256, 48, 48] 0
AdaptiveAvgPool2D-17 [[1, 256, 48, 48]] [1, 256, 1, 1] 0
Conv2D-105 [[1, 256, 1, 1]] [1, 256, 1, 1] 65,792
Conv2D-104 [[1, 256, 48, 48]] [1, 256, 48, 48] 65,792
Identity-33 [[1, 256, 48, 48]] [1, 256, 48, 48] 0
LayerNorm2d-34 [[1, 256, 48, 48]] [1, 256, 48, 48] 512
Conv2D-106 [[1, 256, 48, 48]] [1, 512, 48, 48] 131,584
Conv2D-107 [[1, 256, 48, 48]] [1, 256, 48, 48] 65,792
Identity-34 [[1, 256, 48, 48]] [1, 256, 48, 48] 0
NAFBlock-17 [[1, 256, 48, 48]] [1, 256, 48, 48] 512
LayerNorm2d-35 [[1, 256, 48, 48]] [1, 256, 48, 48] 512
Conv2D-108 [[1, 256, 48, 48]] [1, 512, 48, 48] 131,584
Conv2D-109 [[1, 512, 48, 48]] [1, 512, 48, 48] 5,120
SimpleGate-18 [[1, 512, 48, 48]] [1, 256, 48, 48] 0
AdaptiveAvgPool2D-18 [[1, 256, 48, 48]] [1, 256, 1, 1] 0
Conv2D-111 [[1, 256, 1, 1]] [1, 256, 1, 1] 65,792
Conv2D-110 [[1, 256, 48, 48]] [1, 256, 48, 48] 65,792
Identity-35 [[1, 256, 48, 48]] [1, 256, 48, 48] 0
LayerNorm2d-36 [[1, 256, 48, 48]] [1, 256, 48, 48] 512
Conv2D-112 [[1, 256, 48, 48]] [1, 512, 48, 48] 131,584
Conv2D-113 [[1, 256, 48, 48]] [1, 256, 48, 48] 65,792
Identity-36 [[1, 256, 48, 48]] [1, 256, 48, 48] 0
NAFBlock-18 [[1, 256, 48, 48]] [1, 256, 48, 48] 512
LayerNorm2d-37 [[1, 256, 48, 48]] [1, 256, 48, 48] 512
Conv2D-114 [[1, 256, 48, 48]] [1, 512, 48, 48] 131,584
Conv2D-115 [[1, 512, 48, 48]] [1, 512, 48, 48] 5,120
SimpleGate-19 [[1, 512, 48, 48]] [1, 256, 48, 48] 0
AdaptiveAvgPool2D-19 [[1, 256, 48, 48]] [1, 256, 1, 1] 0
Conv2D-117 [[1, 256, 1, 1]] [1, 256, 1, 1] 65,792
Conv2D-116 [[1, 256, 48, 48]] [1, 256, 48, 48] 65,792
Identity-37 [[1, 256, 48, 48]] [1, 256, 48, 48] 0
LayerNorm2d-38 [[1, 256, 48, 48]] [1, 256, 48, 48] 512
Conv2D-118 [[1, 256, 48, 48]] [1, 512, 48, 48] 131,584
Conv2D-119 [[1, 256, 48, 48]] [1, 256, 48, 48] 65,792
Identity-38 [[1, 256, 48, 48]] [1, 256, 48, 48] 0
NAFBlock-19 [[1, 256, 48, 48]] [1, 256, 48, 48] 512
LayerNorm2d-39 [[1, 256, 48, 48]] [1, 256, 48, 48] 512
Conv2D-120 [[1, 256, 48, 48]] [1, 512, 48, 48] 131,584
Conv2D-121 [[1, 512, 48, 48]] [1, 512, 48, 48] 5,120
SimpleGate-20 [[1, 512, 48, 48]] [1, 256, 48, 48] 0
AdaptiveAvgPool2D-20 [[1, 256, 48, 48]] [1, 256, 1, 1] 0
Conv2D-123 [[1, 256, 1, 1]] [1, 256, 1, 1] 65,792
Conv2D-122 [[1, 256, 48, 48]] [1, 256, 48, 48] 65,792
Identity-39 [[1, 256, 48, 48]] [1, 256, 48, 48] 0
LayerNorm2d-40 [[1, 256, 48, 48]] [1, 256, 48, 48] 512
Conv2D-124 [[1, 256, 48, 48]] [1, 512, 48, 48] 131,584
Conv2D-125 [[1, 256, 48, 48]] [1, 256, 48, 48] 65,792
Identity-40 [[1, 256, 48, 48]] [1, 256, 48, 48] 0
NAFBlock-20 [[1, 256, 48, 48]] [1, 256, 48, 48] 512
LayerNorm2d-41 [[1, 256, 48, 48]] [1, 256, 48, 48] 512
Conv2D-126 [[1, 256, 48, 48]] [1, 512, 48, 48] 131,584
Conv2D-127 [[1, 512, 48, 48]] [1, 512, 48, 48] 5,120
SimpleGate-21 [[1, 512, 48, 48]] [1, 256, 48, 48] 0
AdaptiveAvgPool2D-21 [[1, 256, 48, 48]] [1, 256, 1, 1] 0
Conv2D-129 [[1, 256, 1, 1]] [1, 256, 1, 1] 65,792
Conv2D-128 [[1, 256, 48, 48]] [1, 256, 48, 48] 65,792
Identity-41 [[1, 256, 48, 48]] [1, 256, 48, 48] 0
LayerNorm2d-42 [[1, 256, 48, 48]] [1, 256, 48, 48] 512
Conv2D-130 [[1, 256, 48, 48]] [1, 512, 48, 48] 131,584
Conv2D-131 [[1, 256, 48, 48]] [1, 256, 48, 48] 65,792
Identity-42 [[1, 256, 48, 48]] [1, 256, 48, 48] 0
NAFBlock-21 [[1, 256, 48, 48]] [1, 256, 48, 48] 512
LayerNorm2d-43 [[1, 256, 48, 48]] [1, 256, 48, 48] 512
Conv2D-132 [[1, 256, 48, 48]] [1, 512, 48, 48] 131,584
Conv2D-133 [[1, 512, 48, 48]] [1, 512, 48, 48] 5,120
SimpleGate-22 [[1, 512, 48, 48]] [1, 256, 48, 48] 0
AdaptiveAvgPool2D-22 [[1, 256, 48, 48]] [1, 256, 1, 1] 0
Conv2D-135 [[1, 256, 1, 1]] [1, 256, 1, 1] 65,792
Conv2D-134 [[1, 256, 48, 48]] [1, 256, 48, 48] 65,792
Identity-43 [[1, 256, 48, 48]] [1, 256, 48, 48] 0
LayerNorm2d-44 [[1, 256, 48, 48]] [1, 256, 48, 48] 512
Conv2D-136 [[1, 256, 48, 48]] [1, 512, 48, 48] 131,584
Conv2D-137 [[1, 256, 48, 48]] [1, 256, 48, 48] 65,792
Identity-44 [[1, 256, 48, 48]] [1, 256, 48, 48] 0
NAFBlock-22 [[1, 256, 48, 48]] [1, 256, 48, 48] 512
LayerNorm2d-45 [[1, 256, 48, 48]] [1, 256, 48, 48] 512
Conv2D-138 [[1, 256, 48, 48]] [1, 512, 48, 48] 131,584
Conv2D-139 [[1, 512, 48, 48]] [1, 512, 48, 48] 5,120
SimpleGate-23 [[1, 512, 48, 48]] [1, 256, 48, 48] 0
AdaptiveAvgPool2D-23 [[1, 256, 48, 48]] [1, 256, 1, 1] 0
Conv2D-141 [[1, 256, 1, 1]] [1, 256, 1, 1] 65,792
Conv2D-140 [[1, 256, 48, 48]] [1, 256, 48, 48] 65,792
Identity-45 [[1, 256, 48, 48]] [1, 256, 48, 48] 0
LayerNorm2d-46 [[1, 256, 48, 48]] [1, 256, 48, 48] 512
Conv2D-142 [[1, 256, 48, 48]] [1, 512, 48, 48] 131,584
Conv2D-143 [[1, 256, 48, 48]] [1, 256, 48, 48] 65,792
Identity-46 [[1, 256, 48, 48]] [1, 256, 48, 48] 0
NAFBlock-23 [[1, 256, 48, 48]] [1, 256, 48, 48] 512
LayerNorm2d-47 [[1, 256, 48, 48]] [1, 256, 48, 48] 512
Conv2D-144 [[1, 256, 48, 48]] [1, 512, 48, 48] 131,584
Conv2D-145 [[1, 512, 48, 48]] [1, 512, 48, 48] 5,120
SimpleGate-24 [[1, 512, 48, 48]] [1, 256, 48, 48] 0
AdaptiveAvgPool2D-24 [[1, 256, 48, 48]] [1, 256, 1, 1] 0
Conv2D-147 [[1, 256, 1, 1]] [1, 256, 1, 1] 65,792
Conv2D-146 [[1, 256, 48, 48]] [1, 256, 48, 48] 65,792
Identity-47 [[1, 256, 48, 48]] [1, 256, 48, 48] 0
LayerNorm2d-48 [[1, 256, 48, 48]] [1, 256, 48, 48] 512
Conv2D-148 [[1, 256, 48, 48]] [1, 512, 48, 48] 131,584
Conv2D-149 [[1, 256, 48, 48]] [1, 256, 48, 48] 65,792
Identity-48 [[1, 256, 48, 48]] [1, 256, 48, 48] 0
NAFBlock-24 [[1, 256, 48, 48]] [1, 256, 48, 48] 512
LayerNorm2d-49 [[1, 256, 48, 48]] [1, 256, 48, 48] 512
Conv2D-150 [[1, 256, 48, 48]] [1, 512, 48, 48] 131,584
Conv2D-151 [[1, 512, 48, 48]] [1, 512, 48, 48] 5,120
SimpleGate-25 [[1, 512, 48, 48]] [1, 256, 48, 48] 0
AdaptiveAvgPool2D-25 [[1, 256, 48, 48]] [1, 256, 1, 1] 0
Conv2D-153 [[1, 256, 1, 1]] [1, 256, 1, 1] 65,792
Conv2D-152 [[1, 256, 48, 48]] [1, 256, 48, 48] 65,792
Identity-49 [[1, 256, 48, 48]] [1, 256, 48, 48] 0
LayerNorm2d-50 [[1, 256, 48, 48]] [1, 256, 48, 48] 512
Conv2D-154 [[1, 256, 48, 48]] [1, 512, 48, 48] 131,584
Conv2D-155 [[1, 256, 48, 48]] [1, 256, 48, 48] 65,792
Identity-50 [[1, 256, 48, 48]] [1, 256, 48, 48] 0
NAFBlock-25 [[1, 256, 48, 48]] [1, 256, 48, 48] 512
LayerNorm2d-51 [[1, 256, 48, 48]] [1, 256, 48, 48] 512
Conv2D-156 [[1, 256, 48, 48]] [1, 512, 48, 48] 131,584
Conv2D-157 [[1, 512, 48, 48]] [1, 512, 48, 48] 5,120
SimpleGate-26 [[1, 512, 48, 48]] [1, 256, 48, 48] 0
AdaptiveAvgPool2D-26 [[1, 256, 48, 48]] [1, 256, 1, 1] 0
Conv2D-159 [[1, 256, 1, 1]] [1, 256, 1, 1] 65,792
Conv2D-158 [[1, 256, 48, 48]] [1, 256, 48, 48] 65,792
Identity-51 [[1, 256, 48, 48]] [1, 256, 48, 48] 0
LayerNorm2d-52 [[1, 256, 48, 48]] [1, 256, 48, 48] 512
Conv2D-160 [[1, 256, 48, 48]] [1, 512, 48, 48] 131,584
Conv2D-161 [[1, 256, 48, 48]] [1, 256, 48, 48] 65,792
Identity-52 [[1, 256, 48, 48]] [1, 256, 48, 48] 0
NAFBlock-26 [[1, 256, 48, 48]] [1, 256, 48, 48] 512
Conv2D-162 [[1, 256, 48, 48]] [1, 512, 24, 24] 524,800
LayerNorm2d-53 [[1, 512, 24, 24]] [1, 512, 24, 24] 1,024
Conv2D-163 [[1, 512, 24, 24]] [1, 1024, 24, 24] 525,312
Conv2D-164 [[1, 1024, 24, 24]] [1, 1024, 24, 24] 10,240
SimpleGate-27 [[1, 1024, 24, 24]] [1, 512, 24, 24] 0
AdaptiveAvgPool2D-27 [[1, 512, 24, 24]] [1, 512, 1, 1] 0
Conv2D-166 [[1, 512, 1, 1]] [1, 512, 1, 1] 262,656
Conv2D-165 [[1, 512, 24, 24]] [1, 512, 24, 24] 262,656
Identity-53 [[1, 512, 24, 24]] [1, 512, 24, 24] 0
LayerNorm2d-54 [[1, 512, 24, 24]] [1, 512, 24, 24] 1,024
Conv2D-167 [[1, 512, 24, 24]] [1, 1024, 24, 24] 525,312
Conv2D-168 [[1, 512, 24, 24]] [1, 512, 24, 24] 262,656
Identity-54 [[1, 512, 24, 24]] [1, 512, 24, 24] 0
NAFBlock-27 [[1, 512, 24, 24]] [1, 512, 24, 24] 1,024
LayerNorm2d-55 [[1, 512, 24, 24]] [1, 512, 24, 24] 1,024
Conv2D-169 [[1, 512, 24, 24]] [1, 1024, 24, 24] 525,312
Conv2D-170 [[1, 1024, 24, 24]] [1, 1024, 24, 24] 10,240
SimpleGate-28 [[1, 1024, 24, 24]] [1, 512, 24, 24] 0
AdaptiveAvgPool2D-28 [[1, 512, 24, 24]] [1, 512, 1, 1] 0
Conv2D-172 [[1, 512, 1, 1]] [1, 512, 1, 1] 262,656
Conv2D-171 [[1, 512, 24, 24]] [1, 512, 24, 24] 262,656
Identity-55 [[1, 512, 24, 24]] [1, 512, 24, 24] 0
LayerNorm2d-56 [[1, 512, 24, 24]] [1, 512, 24, 24] 1,024
Conv2D-173 [[1, 512, 24, 24]] [1, 1024, 24, 24] 525,312
Conv2D-174 [[1, 512, 24, 24]] [1, 512, 24, 24] 262,656
Identity-56 [[1, 512, 24, 24]] [1, 512, 24, 24] 0
NAFBlock-28 [[1, 512, 24, 24]] [1, 512, 24, 24] 1,024
Conv2D-175 [[1, 512, 24, 24]] [1, 1024, 24, 24] 524,288
PixelShuffle-1 [[1, 1024, 24, 24]] [1, 256, 48, 48] 0
LayerNorm2d-57 [[1, 256, 48, 48]] [1, 256, 48, 48] 512
Conv2D-176 [[1, 256, 48, 48]] [1, 512, 48, 48] 131,584
Conv2D-177 [[1, 512, 48, 48]] [1, 512, 48, 48] 5,120
SimpleGate-29 [[1, 512, 48, 48]] [1, 256, 48, 48] 0
AdaptiveAvgPool2D-29 [[1, 256, 48, 48]] [1, 256, 1, 1] 0
Conv2D-179 [[1, 256, 1, 1]] [1, 256, 1, 1] 65,792
Conv2D-178 [[1, 256, 48, 48]] [1, 256, 48, 48] 65,792
Identity-57 [[1, 256, 48, 48]] [1, 256, 48, 48] 0
LayerNorm2d-58 [[1, 256, 48, 48]] [1, 256, 48, 48] 512
Conv2D-180 [[1, 256, 48, 48]] [1, 512, 48, 48] 131,584
Conv2D-181 [[1, 256, 48, 48]] [1, 256, 48, 48] 65,792
Identity-58 [[1, 256, 48, 48]] [1, 256, 48, 48] 0
NAFBlock-29 [[1, 256, 48, 48]] [1, 256, 48, 48] 512
LayerNorm2d-59 [[1, 256, 48, 48]] [1, 256, 48, 48] 512
Conv2D-182 [[1, 256, 48, 48]] [1, 512, 48, 48] 131,584
Conv2D-183 [[1, 512, 48, 48]] [1, 512, 48, 48] 5,120
SimpleGate-30 [[1, 512, 48, 48]] [1, 256, 48, 48] 0
AdaptiveAvgPool2D-30 [[1, 256, 48, 48]] [1, 256, 1, 1] 0
Conv2D-185 [[1, 256, 1, 1]] [1, 256, 1, 1] 65,792
Conv2D-184 [[1, 256, 48, 48]] [1, 256, 48, 48] 65,792
Identity-59 [[1, 256, 48, 48]] [1, 256, 48, 48] 0
LayerNorm2d-60 [[1, 256, 48, 48]] [1, 256, 48, 48] 512
Conv2D-186 [[1, 256, 48, 48]] [1, 512, 48, 48] 131,584
Conv2D-187 [[1, 256, 48, 48]] [1, 256, 48, 48] 65,792
Identity-60 [[1, 256, 48, 48]] [1, 256, 48, 48] 0
NAFBlock-30 [[1, 256, 48, 48]] [1, 256, 48, 48] 512
Conv2D-188 [[1, 256, 48, 48]] [1, 512, 48, 48] 131,072
PixelShuffle-2 [[1, 512, 48, 48]] [1, 128, 96, 96] 0
LayerNorm2d-61 [[1, 128, 96, 96]] [1, 128, 96, 96] 256
Conv2D-189 [[1, 128, 96, 96]] [1, 256, 96, 96] 33,024
Conv2D-190 [[1, 256, 96, 96]] [1, 256, 96, 96] 2,560
SimpleGate-31 [[1, 256, 96, 96]] [1, 128, 96, 96] 0
AdaptiveAvgPool2D-31 [[1, 128, 96, 96]] [1, 128, 1, 1] 0
Conv2D-192 [[1, 128, 1, 1]] [1, 128, 1, 1] 16,512
Conv2D-191 [[1, 128, 96, 96]] [1, 128, 96, 96] 16,512
Identity-61 [[1, 128, 96, 96]] [1, 128, 96, 96] 0
LayerNorm2d-62 [[1, 128, 96, 96]] [1, 128, 96, 96] 256
Conv2D-193 [[1, 128, 96, 96]] [1, 256, 96, 96] 33,024
Conv2D-194 [[1, 128, 96, 96]] [1, 128, 96, 96] 16,512
Identity-62 [[1, 128, 96, 96]] [1, 128, 96, 96] 0
NAFBlock-31 [[1, 128, 96, 96]] [1, 128, 96, 96] 256
LayerNorm2d-63 [[1, 128, 96, 96]] [1, 128, 96, 96] 256
Conv2D-195 [[1, 128, 96, 96]] [1, 256, 96, 96] 33,024
Conv2D-196 [[1, 256, 96, 96]] [1, 256, 96, 96] 2,560
SimpleGate-32 [[1, 256, 96, 96]] [1, 128, 96, 96] 0
AdaptiveAvgPool2D-32 [[1, 128, 96, 96]] [1, 128, 1, 1] 0
Conv2D-198 [[1, 128, 1, 1]] [1, 128, 1, 1] 16,512
Conv2D-197 [[1, 128, 96, 96]] [1, 128, 96, 96] 16,512
Identity-63 [[1, 128, 96, 96]] [1, 128, 96, 96] 0
LayerNorm2d-64 [[1, 128, 96, 96]] [1, 128, 96, 96] 256
Conv2D-199 [[1, 128, 96, 96]] [1, 256, 96, 96] 33,024
Conv2D-200 [[1, 128, 96, 96]] [1, 128, 96, 96] 16,512
Identity-64 [[1, 128, 96, 96]] [1, 128, 96, 96] 0
NAFBlock-32 [[1, 128, 96, 96]] [1, 128, 96, 96] 256
Conv2D-201 [[1, 128, 96, 96]] [1, 256, 96, 96] 32,768
PixelShuffle-3 [[1, 256, 96, 96]] [1, 64, 192, 192] 0
LayerNorm2d-65 [[1, 64, 192, 192]] [1, 64, 192, 192] 128
Conv2D-202 [[1, 64, 192, 192]] [1, 128, 192, 192] 8,320
Conv2D-203 [[1, 128, 192, 192]] [1, 128, 192, 192] 1,280
SimpleGate-33 [[1, 128, 192, 192]] [1, 64, 192, 192] 0
AdaptiveAvgPool2D-33 [[1, 64, 192, 192]] [1, 64, 1, 1] 0
Conv2D-205 [[1, 64, 1, 1]] [1, 64, 1, 1] 4,160
Conv2D-204 [[1, 64, 192, 192]] [1, 64, 192, 192] 4,160
Identity-65 [[1, 64, 192, 192]] [1, 64, 192, 192] 0
LayerNorm2d-66 [[1, 64, 192, 192]] [1, 64, 192, 192] 128
Conv2D-206 [[1, 64, 192, 192]] [1, 128, 192, 192] 8,320
Conv2D-207 [[1, 64, 192, 192]] [1, 64, 192, 192] 4,160
Identity-66 [[1, 64, 192, 192]] [1, 64, 192, 192] 0
NAFBlock-33 [[1, 64, 192, 192]] [1, 64, 192, 192] 128
LayerNorm2d-67 [[1, 64, 192, 192]] [1, 64, 192, 192] 128
Conv2D-208 [[1, 64, 192, 192]] [1, 128, 192, 192] 8,320
Conv2D-209 [[1, 128, 192, 192]] [1, 128, 192, 192] 1,280
SimpleGate-34 [[1, 128, 192, 192]] [1, 64, 192, 192] 0
AdaptiveAvgPool2D-34 [[1, 64, 192, 192]] [1, 64, 1, 1] 0
Conv2D-211 [[1, 64, 1, 1]] [1, 64, 1, 1] 4,160
Conv2D-210 [[1, 64, 192, 192]] [1, 64, 192, 192] 4,160
Identity-67 [[1, 64, 192, 192]] [1, 64, 192, 192] 0
LayerNorm2d-68 [[1, 64, 192, 192]] [1, 64, 192, 192] 128
Conv2D-212 [[1, 64, 192, 192]] [1, 128, 192, 192] 8,320
Conv2D-213 [[1, 64, 192, 192]] [1, 64, 192, 192] 4,160
Identity-68 [[1, 64, 192, 192]] [1, 64, 192, 192] 0
NAFBlock-34 [[1, 64, 192, 192]] [1, 64, 192, 192] 128
Conv2D-214 [[1, 64, 192, 192]] [1, 128, 192, 192] 8,192
PixelShuffle-4 [[1, 128, 192, 192]] [1, 32, 384, 384] 0
LayerNorm2d-69 [[1, 32, 384, 384]] [1, 32, 384, 384] 64
Conv2D-215 [[1, 32, 384, 384]] [1, 64, 384, 384] 2,112
Conv2D-216 [[1, 64, 384, 384]] [1, 64, 384, 384] 640
SimpleGate-35 [[1, 64, 384, 384]] [1, 32, 384, 384] 0
AdaptiveAvgPool2D-35 [[1, 32, 384, 384]] [1, 32, 1, 1] 0
Conv2D-218 [[1, 32, 1, 1]] [1, 32, 1, 1] 1,056
Conv2D-217 [[1, 32, 384, 384]] [1, 32, 384, 384] 1,056
Identity-69 [[1, 32, 384, 384]] [1, 32, 384, 384] 0
LayerNorm2d-70 [[1, 32, 384, 384]] [1, 32, 384, 384] 64
Conv2D-219 [[1, 32, 384, 384]] [1, 64, 384, 384] 2,112
Conv2D-220 [[1, 32, 384, 384]] [1, 32, 384, 384] 1,056
Identity-70 [[1, 32, 384, 384]] [1, 32, 384, 384] 0
NAFBlock-35 [[1, 32, 384, 384]] [1, 32, 384, 384] 64
LayerNorm2d-71 [[1, 32, 384, 384]] [1, 32, 384, 384] 64
Conv2D-221 [[1, 32, 384, 384]] [1, 64, 384, 384] 2,112
Conv2D-222 [[1, 64, 384, 384]] [1, 64, 384, 384] 640
SimpleGate-36 [[1, 64, 384, 384]] [1, 32, 384, 384] 0
AdaptiveAvgPool2D-36 [[1, 32, 384, 384]] [1, 32, 1, 1] 0
Conv2D-224 [[1, 32, 1, 1]] [1, 32, 1, 1] 1,056
Conv2D-223 [[1, 32, 384, 384]] [1, 32, 384, 384] 1,056
Identity-71 [[1, 32, 384, 384]] [1, 32, 384, 384] 0
LayerNorm2d-72 [[1, 32, 384, 384]] [1, 32, 384, 384] 64
Conv2D-225 [[1, 32, 384, 384]] [1, 64, 384, 384] 2,112
Conv2D-226 [[1, 32, 384, 384]] [1, 32, 384, 384] 1,056
Identity-72 [[1, 32, 384, 384]] [1, 32, 384, 384] 0
NAFBlock-36 [[1, 32, 384, 384]] [1, 32, 384, 384] 64
Conv2D-2 [[1, 32, 384, 384]] [1, 3, 384, 384] 867
================================================================================
Total params: 16,009,251
Trainable params: 16,009,251
Non-trainable params: 0
--------------------------------------------------------------------------------
Input size (MB): 1.69
Forward/backward pass size (MB): 5185.24
Params size (MB): 61.07
Estimated Total Size (MB): 5248.00
--------------------------------------------------------------------------------