从零开发一个非常有意思的 Python 项目:手势识别

最近开发了一个手势处理的项目(零基础也可以学,就是针对零基础的),我在这儿简单的复述一下原理,总体来说还是比较简单的,主要运用的知识就是opencv,python基本语法,图像处理基础知识。

最终实现结果:

文章目录

  • 技术交流
  • 获取视频(摄像头)
  • 肤色检测
  • 轮廓处理
  • 全部代码

技术交流

技术要学会分享、交流,不建议闭门造车。 本文技术由粉丝群小伙伴推荐分享。源码、数据、技术交流提升,均可加交流群获取,群友已超过3000人,添加时最好的备注方式为:来源+兴趣方向,方便找到志同道合的朋友。

方式①、添加微信号:dkl88191,备注:来自CSDN +技术交流
方式②、微信搜索公众号:Python学习与数据挖掘,后台回复:加群

获取视频(摄像头)

这部分没啥说的,就是获取摄像头。

cap = cv2.VideoCapture("C:/Users/lenovo/Videos/1.mp4")#读取文件
#cap = cv2.VideoCapture(0)#读取摄像头
while(True):
    ret, frame = cap.read()    key = cv2.waitKey(50) & 0xFF
    if key == ord('q'):
      break
cap.release()
cv2.destroyAllWindows()

肤色检测

这里使用的是椭圆肤色检测模型。

在RGB空间里人脸的肤色受亮度影响相当大,所以肤色点很难从非肤色点中分离出来,也就是说在此空间经过处理后,肤色点是离散的点,中间嵌有很多非肤色,这为肤色区域标定(人脸标定、眼睛等)带来了难题。

如果把RGB转为YCrCb空间的话,可以忽略Y(亮度)的影响,因为该空间受亮度影响很小,肤色会产生很好的类聚。

这样就把三维的空间将为二维的CrCb,肤色点会形成一定得形状,如:人脸的话会看到一个人脸的区域,手臂的话会看到一条手臂的形态。

def A(img):

    YCrCb = cv2.cvtColor(img, cv2.COLOR_BGR2YCR_CB) #转换至YCrCb空间
    (y,cr,cb) = cv2.split(YCrCb) #拆分出Y,Cr,Cb值
    cr1 = cv2.GaussianBlur(cr, (5,5), 0)
    _, skin = cv2.threshold(cr1, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) #Ostu处理
    res = cv2.bitwise_and(img,img, mask = skin)
    return res

轮廓处理

轮廓处理的话主要用到两个函数,cv2.findContours和cv2.drawContours,这两个函数的使用使用方法很容易搜到就不说了,这部分主要的问题是提取到的轮廓有很多个,但是我们只需要手的轮廓,所以我们要用sorted函数找到最大的轮廓。

def B(img):

    #binaryimg = cv2.Canny(Laplacian, 50, 200) #二值化,canny检测
    h = cv2.findContours(img,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE) #寻找轮廓
    contour = h[0]
    contour = sorted(contour, key = cv2.contourArea, reverse=True)#已轮廓区域面积进行排序
    #contourmax = contour[0][:, 0, :]#保留区域面积最大的轮廓点坐标
    bg = np.ones(dst.shape, np.uint8) *255#创建白色幕布
    ret = cv2.drawContours(bg,contour[0],-1,(0,0,0),3) #绘制黑色轮廓
    return ret

从零开发一个非常有意思的 Python 项目:手势识别_第1张图片

全部代码

""" 从视频读取帧保存为图片"""
import cv2
import numpy as np
cap = cv2.VideoCapture("C:/Users/lenovo/Videos/1.mp4")#读取文件
#cap = cv2.VideoCapture(0)#读取摄像头

#皮肤检测
def A(img):

    YCrCb = cv2.cvtColor(img, cv2.COLOR_BGR2YCR_CB) #转换至YCrCb空间
    (y,cr,cb) = cv2.split(YCrCb) #拆分出Y,Cr,Cb值
    cr1 = cv2.GaussianBlur(cr, (5,5), 0)
    _, skin = cv2.threshold(cr1, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) #Ostu处理
    res = cv2.bitwise_and(img,img, mask = skin)
    return res

def B(img):

    #binaryimg = cv2.Canny(Laplacian, 50, 200) #二值化,canny检测
    h = cv2.findContours(img,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE) #寻找轮廓
    contour = h[0]
    contour = sorted(contour, key = cv2.contourArea, reverse=True)#已轮廓区域面积进行排序
    #contourmax = contour[0][:, 0, :]#保留区域面积最大的轮廓点坐标
    bg = np.ones(dst.shape, np.uint8) *255#创建白色幕布
    ret = cv2.drawContours(bg,contour[0],-1,(0,0,0),3) #绘制黑色轮廓
    return ret


while(True):

    ret, frame = cap.read()
    #下面三行可以根据自己的电脑进行调节
    src = cv2.resize(frame,(400,350), interpolation=cv2.INTER_CUBIC)#窗口大小
    cv2.rectangle(src, (90, 60), (300, 300 ), (0, 255, 0))#框出截取位置
    roi = src[60:300 , 90:300]  # 获取手势框图

    res = A(roi)  # 进行肤色检测
    cv2.imshow("0",roi)

    gray = cv2.cvtColor(res, cv2.COLOR_BGR2GRAY)
    dst = cv2.Laplacian(gray, cv2.CV_16S, ksize = 3)
    Laplacian = cv2.convertScaleAbs(dst)

    contour = B(Laplacian)#轮廓处理
    cv2.imshow("2",contour)

    key = cv2.waitKey(50) & 0xFF
    if key == ord('q'):
            break
cap.release()
cv2.destroyAllWindows()

你可能感兴趣的:(机器学习,python,opencv,计算机视觉)