Apache hudi 源码分析 - 写时处理优化小文件问题

Flink : 0.12 (引擎版本影响不大)

hudi : 0.11.0-SNAPSHOT

Time: 2022/03/14

spark 适配同理

整体流程

  1. flink 对每一行数据进行处理,构造 recorderKey(包含分区路径)
  2. 通过 Hudi Metadata 获取指定分区路径所有满足条件的小文件(fileId)
  3. 对小文件进行构造生成 AssignState,通过计算历史平均每一行数据的大小,计算每个小文件还能再存入多少条数据。将 AssignState 用分区路径缓存。
  4. 对每行数据重复上述操作,如果是已经缓存过的分区路径,直接获取 AssginState,更新每个小文件剩余存入个数
  5. 如果小文件剩余容量不足,就会创建新的 fileId 进行写入
  6. 待 checkpoint 触发写出

源码分析

BucketAssignFunction.java

​ flink processElement,hudi 会通过其计算的每一条数据的 recordKey 得到 partitionPath

private HoodieRecordLocation getNewRecordLocation(String partitionPath) {
    // // 通过 recordKey 得到 partitionPath,获取对应分区的小文件信息,观察下一个代码块
    final BucketInfo bucketInfo = this.bucketAssigner.addInsert(partitionPath);
    final HoodieRecordLocation location;
    switch (bucketInfo.getBucketType()) {
      case INSERT:
        // This is an insert bucket, use HoodieRecordLocation instant time as "I".
        // Downstream operators can then check the instant time to know whether
        // a record belongs to an insert bucket.
        location = new HoodieRecordLocation("I", bucketInfo.getFileIdPrefix());
        break;
      case UPDATE:
        location = new HoodieRecordLocation("U", bucketInfo.getFileIdPrefix());
        break;
      default:
        throw new AssertionError();
    }
    return location;
  }

BucketAssigner.java

public BucketInfo addInsert(String partitionPath) {
    // 获取小文件,观察下一个代码块,然后回来
    SmallFileAssign smallFileAssign = getSmallFileAssign(partitionPath);

    // assign 判断小文件是否还能再分配,不能超过 totalAssgin
    if (smallFileAssign != null && smallFileAssign.assign()) {
      return new BucketInfo(BucketType.UPDATE, smallFileAssign.getFileId(), partitionPath);
    }

    // 下面就是创建新的 fileId 写入
    ...
  }


private synchronized SmallFileAssign getSmallFileAssign(String partitionPath) {
    // 判断是否缓存了对应分区路径的小文件信息
    if (smallFileAssignMap.containsKey(partitionPath)) {
      return smallFileAssignMap.get(partitionPath);
    }
  	// writeProfile.getSmallFiles 获取小文件,观察下一个代码块,然后回来
    List<SmallFile> smallFiles = smallFilesOfThisTask(writeProfile.getSmallFiles(partitionPath));
    if (smallFiles.size() > 0) {
      LOG.info("For partitionPath : " + partitionPath + " Small Files => " + smallFiles);
      // 重点关注:
      // 
      //注意这里:小文件返回后构造 assignState, 在初始化 SmallFileAssignState 时,会通过计算历史的平均每行数据的大小,如果没有,默认 1024 byte 作为每一行大小。
      // 然后 (文件最大配置 - 小文件大小) / 平均行大小 = 这个小文件还能分配的行数(totalUnassigned
      // 后续的 processElement 每次就会调用 SmallFileAssignState assigned 分配(如果 partitionUrl 相同),直到分配完
      //
      // // 重点关注:
      SmallFileAssignState[] states = smallFiles.stream()
          .map(smallFile -> new SmallFileAssignState(config.getParquetMaxFileSize(), smallFile, writeProfile.getAvgSize()))
          .toArray(SmallFileAssignState[]::new);
      SmallFileAssign assign = new SmallFileAssign(states);
      smallFileAssignMap.put(partitionPath, assign);
      return assign;
    }
    smallFileAssignMap.put(partitionPath, null);
    return null;
  }

WriteProfile.java

public synchronized List<SmallFile> getSmallFiles(String partitionPath) {
    // lookup the cache first
    if (smallFilesMap.containsKey(partitionPath)) {
      return smallFilesMap.get(partitionPath);
    }

    List<SmallFile> smallFiles = new ArrayList<>();
    if (config.getParquetSmallFileLimit() <= 0) {
      this.smallFilesMap.put(partitionPath, smallFiles);
      return smallFiles;
    }

    // 获取小文件,调用 smallFilesProfile
    smallFiles = smallFilesProfile(partitionPath);
    this.smallFilesMap.put(partitionPath, smallFiles);
    return smallFiles;
  }


// 非 MOR 表实现,MOR 表调用 DeltaWriteProfile.smallFIleProfile
protected List<SmallFile> smallFilesProfile(String partitionPath) {
    // smallFiles only for partitionPath
    List<SmallFile> smallFileLocations = new ArrayList<>();

    HoodieTimeline commitTimeline = metaClient.getCommitsTimeline().filterCompletedInstants();

    if (!commitTimeline.empty()) { // if we have some commits
      HoodieInstant latestCommitTime = commitTimeline.lastInstant().get();
      // 获取指定分区下的所有文件(使用 Metadata 获取的 fsView)
      List<HoodieBaseFile> allFiles = fsView
          .getLatestBaseFilesBeforeOrOn(partitionPath, latestCommitTime.getTimestamp()).collect(Collectors.toList());

      for (HoodieBaseFile file : allFiles) {
        // 过滤出满足条件的文件
        // 小于 hoodie.parquet.small.file.limit 默认 100M,并且大于 0 的文件
        if (file.getFileSize() < config.getParquetSmallFileLimit() && file.getFileSize() > 0) {
          String filename = file.getFileName();
          SmallFile sf = new SmallFile();
          sf.location = new HoodieRecordLocation(FSUtils.getCommitTime(filename), FSUtils.getFileId(filename));
          sf.sizeBytes = file.getFileSize();
          smallFileLocations.add(sf);
        }
      }
    }

    return smallFileLocations;
  }

如果是 MOR 表,DeltaWriteProfile.java

@Override
  protected List<SmallFile> smallFilesProfile(String partitionPath) {
    // smallFiles only for partitionPath
    List<SmallFile> smallFileLocations = new ArrayList<>();

    // Init here since this class (and member variables) might not have been initialized
    HoodieTimeline commitTimeline = metaClient.getCommitsTimeline().filterCompletedInstants();

    // Find out all eligible small file slices
    if (!commitTimeline.empty()) {
      HoodieInstant latestCommitTime = commitTimeline.lastInstant().get();
      // find the smallest file in partition and append to it
      List<FileSlice> allSmallFileSlices = new ArrayList<>();
      // If we can index log files, we can add more inserts to log files for fileIds including those under
      // pending compaction.
      // 获取 base_file + log_file 的文件偏
      List<FileSlice> allFileSlices = fsView.getLatestFileSlicesBeforeOrOn(partitionPath, latestCommitTime.getTimestamp(), true)
          .collect(Collectors.toList());
      for (FileSlice fileSlice : allFileSlices) {
        // 判断是否满足小文件的条件 
        // (baseFileSize + totalLogFileSize * ratio) < hoodie.parquet.max.file.size(120M)
        // 这里的 ratio 是 hoodie.logfile.to.parquet.compression.ratio,默认 0.35
        if (isSmallFile(fileSlice)) {
          allSmallFileSlices.add(fileSlice);
        }
      }
      // Create SmallFiles from the eligible file slices
      for (FileSlice smallFileSlice : allSmallFileSlices) {
        SmallFile sf = new SmallFile();
        if (smallFileSlice.getBaseFile().isPresent()) {
          // TODO : Move logic of file name, file id, base commit time handling inside file slice
          String filename = smallFileSlice.getBaseFile().get().getFileName();
          sf.location = new HoodieRecordLocation(FSUtils.getCommitTime(filename), FSUtils.getFileId(filename));
          sf.sizeBytes = getTotalFileSize(smallFileSlice);
          smallFileLocations.add(sf);
        } else {
          smallFileSlice.getLogFiles().findFirst().ifPresent(logFile -> {
            // in case there is something error, and the file slice has no log file
            sf.location = new HoodieRecordLocation(FSUtils.getBaseCommitTimeFromLogPath(logFile.getPath()),
                FSUtils.getFileIdFromLogPath(logFile.getPath()));
            sf.sizeBytes = getTotalFileSize(smallFileSlice);
            smallFileLocations.add(sf);
          });
        }
      }
    }
    return smallFileLocations;
  }

注意点

  • 解决小文件的方式不是追加写文件,而是使用相同的 fileId 生成新的版本号,所以可能会有文件数并没有降低的疑问。设置合适的版本历史和 clean service 自动清理历史版本数据

欢迎关注公众号:
Apache hudi 源码分析 - 写时处理优化小文件问题_第1张图片

你可能感兴趣的:(hudi,flink,大数据,数据库架构)