ACGAN 简介与代码实战

1.介绍

  CGAN通过结合标签信息来提高生成数据的质量,SGAN通过重建标签信息来提高生成数据的质量,那么我们可不可以两者都用,答案是显然的,因为ACGAN就是这样干的。更加详细的内容可以参见论文:Conditional Image Synthesis with Auxiliary Classifier GANs

 

2.模型结构

   G的输入是分类标签和固定分布噪声,D的输出是真假和分类标签。

ACGAN 简介与代码实战_第1张图片

 Ls为真假判断损失, Lc为分类损失,D is trained to maximize LS + LC while G is trained to maximize LC -LS.

 

3.模型特点

     CGAN(参见CGAN 简介与代码实战),SGAN(参见SGAN 简介与代码实战),InfoGAN(参见InfoGAN 简介与代码实战),而ACGAN明显是结合了这三者的特点。

ACGAN 简介与代码实战_第2张图片

 

 4.代码实现keras

class ACGAN():
    def __init__(self):
        # Input shape
        self.img_rows = 28
        self.img_cols = 28
        self.channels = 1
        self.img_shape = (self.img_rows, self.img_cols, self.channels)
        self.num_classes = 10
        self.latent_dim = 100

        optimizer = Adam(0.0002, 0.5)
        losses = ['binary_crossentropy', 'sparse_categorical_crossentropy']

        # Build and compile the discriminator
        self.discriminator = self.build_discriminator()
        self.discriminator.compile(loss=losses,
            optimizer=optimizer,
            metrics=['accuracy'])

        # Build the generator
        self.generator = self.build_generator()

        # The generator takes noise and the target label as input
        # and generates the corresponding digit of that label
        noise = Input(shape=(self.latent_dim,))
        label = Input(shape=(1,))
        img = self.generator([noise, label])

        # For the combined model we will only train the generator
        self.discriminator.trainable = False

        # The discriminator takes generated image as input and determines validity
        # and the label of that image
        valid, target_label = self.discriminator(img)

        # The combined model  (stacked generator and discriminator)
        # Trains the generator to fool the discriminator
        self.combined = Model([noise, label], [valid, target_label])
        self.combined.compile(loss=losses,
            optimizer=optimizer)

    def build_generator(self):

        model = Sequential()

        model.add(Dense(128 * 7 * 7, activation="relu", input_dim=self.latent_dim))
        model.add(Reshape((7, 7, 128)))
        model.add(BatchNormalization(momentum=0.8))
        model.add(UpSampling2D())
        model.add(Conv2D(128, kernel_size=3, padding="same"))
        model.add(Activation("relu"))
        model.add(BatchNormalization(momentum=0.8))
        model.add(UpSampling2D())
        model.add(Conv2D(64, kernel_size=3, padding="same"))
        model.add(Activation("relu"))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Conv2D(self.channels, kernel_size=3, padding='same'))
        model.add(Activation("tanh"))

        model.summary()

        noise = Input(shape=(self.latent_dim,))
        label = Input(shape=(1,), dtype='int32')
        label_embedding = Flatten()(Embedding(self.num_classes, 100)(label))

        model_input = multiply([noise, label_embedding])
        img = model(model_input)

        return Model([noise, label], img)

    def build_discriminator(self):

        model = Sequential()

        model.add(Conv2D(16, kernel_size=3, strides=2, input_shape=self.img_shape, padding="same"))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dropout(0.25))
        model.add(Conv2D(32, kernel_size=3, strides=2, padding="same"))
        model.add(ZeroPadding2D(padding=((0,1),(0,1))))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dropout(0.25))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Conv2D(64, kernel_size=3, strides=2, padding="same"))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dropout(0.25))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Conv2D(128, kernel_size=3, strides=1, padding="same"))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dropout(0.25))

        model.add(Flatten())
        model.summary()

        img = Input(shape=self.img_shape)

        # Extract feature representation
        features = model(img)

        # Determine validity and label of the image
        validity = Dense(1, activation="sigmoid")(features)
        label = Dense(self.num_classes, activation="softmax")(features)

        return Model(img, [validity, label])

    def train(self, epochs, batch_size=128, sample_interval=50):

        # Load the dataset
        (X_train, y_train), (_, _) = mnist.load_data()

        # Configure inputs
        X_train = (X_train.astype(np.float32) - 127.5) / 127.5
        X_train = np.expand_dims(X_train, axis=3)
        y_train = y_train.reshape(-1, 1)

        # Adversarial ground truths
        valid = np.ones((batch_size, 1))
        fake = np.zeros((batch_size, 1))

        for epoch in range(epochs):

            # ---------------------
            #  Train Discriminator
            # ---------------------

            # Select a random batch of images
            idx = np.random.randint(0, X_train.shape[0], batch_size)
            imgs = X_train[idx]

            # Sample noise as generator input
            noise = np.random.normal(0, 1, (batch_size, 100))

            # The labels of the digits that the generator tries to create an
            # image representation of
            sampled_labels = np.random.randint(0, 10, (batch_size, 1))

            # Generate a half batch of new images
            gen_imgs = self.generator.predict([noise, sampled_labels])

            # Image labels. 0-9 
            img_labels = y_train[idx]

            # Train the discriminator
            d_loss_real = self.discriminator.train_on_batch(imgs, [valid, img_labels])
            d_loss_fake = self.discriminator.train_on_batch(gen_imgs, [fake, sampled_labels])
            d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)

            # ---------------------
            #  Train Generator
            # ---------------------

            # Train the generator
            g_loss = self.combined.train_on_batch([noise, sampled_labels], [valid, sampled_labels])

            # Plot the progress
            print ("%d [D loss: %f, acc.: %.2f%%, op_acc: %.2f%%] [G loss: %f]" % (epoch, d_loss[0], 100*d_loss[3], 100*d_loss[4], g_loss[0]))

            # If at save interval => save generated image samples
            if epoch % sample_interval == 0:
                self.save_model()
                self.sample_images(epoch)

    def sample_images(self, epoch):
        r, c = 10, 10
        noise = np.random.normal(0, 1, (r * c, 100))
        sampled_labels = np.array([num for _ in range(r) for num in range(c)])
        gen_imgs = self.generator.predict([noise, sampled_labels])
        # Rescale images 0 - 1
        gen_imgs = 0.5 * gen_imgs + 0.5

        fig, axs = plt.subplots(r, c)
        cnt = 0
        for i in range(r):
            for j in range(c):
                axs[i,j].imshow(gen_imgs[cnt,:,:,0], cmap='gray')
                axs[i,j].axis('off')
                cnt += 1
        fig.savefig("images/%d.png" % epoch)
        plt.close()

 

你可能感兴趣的:(深度学习GAN基本模型)