- Faster R-CNN原理详解以及Pytorch实现模型训练与推理
阿_旭
深度学习实战cnnpytorch人工智能FasterRCNN
《------往期经典推荐------》一、AI应用软件开发实战专栏【链接】项目名称项目名称1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】3.【手势识别系统开发】4.【人脸面部活体检测系统开发】5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】7.【YOLOv8多目标识别与自动标注软件开发】8.【基于深度学习的行人跌倒检测系统】9.【基于深度学习的PCB板缺陷检测系统
- cornell grasp data 康奈尔大学抓取数据集 百度云
工科pai
深度学习自主抓取康奈尔抓取数据集自主抓取
国内下载较慢,康奈尔大学抓取数据集分享,给有用的人。科研之路道阻且长,互行方便。康奈尔大学抓取数据集是基于深度学习方法实现机器人自主抓取的必备数据集,直接推动了机器人自主抓取的发展。目前先进的基于视觉和机器人抓取方法都是在该数据集上训练过。该数据集共十组,每组100个物体,共计1000个物体,不仅包含物体的图像,还包含物体的抓取位姿。下载链接:链接:https://pan.baidu.com/s/
- 笔记本电脑外接固态移动硬盘可以用于深度学习吗
Vertira
pytorch电脑深度学习智能电视
笔记本电脑外接固态移动硬盘可以用于深度学习。虽然外接固态移动硬盘的传输速度和内置固态硬盘相比有一定差距,但在现代技术下,外接固态移动硬盘的传输速度已经非常快,能够满足深度学习的需求。例如,USB3.2Gen2×2PSSD的传输速度可以达到2000MB/s,这对于深度学习来说已经足够12。具体应用场景和性能表现传输速度:现代外接固态移动硬盘,如USB3.2Gen2×2PSSD,传输速度可以达
- 【大数据】大数据处理-Lambda架构-Kappa架构
weixin_33884611
大数据系统架构
大数据处理-Lambda架构-Kappa架构elasticsearch-headElasticsearch-sqlclientNLPchina/elasticsearch-sql:UseSQLtoqueryElasticsearch360企业安全V5.6SP1,杨军01,您好!lamda架构_百度搜索Lambda架构vsKappa架构-数据源博客-CSDN博客数据系统架构——Lambdaarchi
- 如何使用 SparkLLM 进行自然语言处理
shuoac
python
在当代自然语言处理领域,拥有强大的跨域知识和语言理解能力的模型至关重要。iFLYTEK开发的SparkLLM便是这样一个大规模认知模型。通过学习大量文本、代码和图像,SparkLLM能够理解和执行基于自然对话的任务。在本文中,我们将深入探讨如何配置和使用SparkLLM来处理自然语言任务。技术背景介绍大规模语言模型(LLM)近年来在各个领域中获得了广泛的应用,它们在处理自然语言任务时表现出色。iF
- 使用OpenAI API实现自然语言处理应用
shuoac
自然语言处理人工智能python
使用OpenAIAPI实现自然语言处理应用技术背景介绍随着人工智能技术的不断发展,自然语言处理(NLP)在各种应用中的地位越来越重要。从自动文本生成、聊天机器人到智能搜索引擎,NLP技术的应用场景非常广泛。而OpenAI提供的API使得开发者可以轻松地将先进的NLP模型集成到他们的应用中。核心原理解析OpenAI的API基于强大的GPT(GenerativePre-trainedTransform
- 如何利用PubMed作为信息检索器 — 结合LangChain实现高效文献查询
bhawfgrcbtwny
langchainpython
如何利用PubMed作为信息检索器—结合LangChain实现高效文献查询引言PubMed是由美国国家生物技术信息中心(NCBI)和国家医学图书馆(NLM)维护的一个涵盖超过3500万篇生物医学文献的数据库。对于研究人员和开发者而言,如何高效地从如此庞大的数据库中提取有用的信息是一项挑战。在本文中,我们将探讨如何使用LangChain库中的PubMedRetriever类,从PubMed查询并返回
- 人工智能学习
星月IWJ
人工智能机器学习深度学习神经网络目标检测人工智能
//-----初探-----//人工智能三大核心要素数据/算法/算力人工智能是通过机器来模拟人类认知能力的技术机器学习/神经网络/深度学习(多层隐藏层神经网络)tf1.14python3.5keras2.1.5//-----数学基础&&数字图像-----//向量大小/方向矢量(有大小和方向)标量(只有大小没有方向(长度))单位向量线性变换(矩阵运算)T(v+w)=T(v)+T(w)T(cv)=cT
- 使用Vespa进行高级检索与向量数据库管理
scaFHIO
数据库python
技术背景介绍在现代信息检索领域,为了提供精准且高效的搜索体验,往往需要结合使用向量搜索(ANN)、词法搜索以及结构化数据搜索。Vespa作为一个功能完备的搜索引擎与向量数据库,为我们提供了一站式的解决方案。本文将详细介绍如何使用Vespa进行高级检索,并通过代码示例展示其实际应用。核心原理解析Vespa具备以下核心功能:向量搜索(ANN):基于向量空间的近似最近邻搜索,提高了高维数据检索的效率。词
- 深度学习复习笔记(6)线性回归——新冠预测项目
Kriol
深度学习初学深度学习笔记线性回归
importmatplotlib.pyplotaspltimporttorch#框架importnumpyasnp#矩阵处理importcsv#读excel文件fromtorch.utils.dataimportDataLoader,Dataset#两个与数据处理相关的包,类Datasetimporttorch.nnasnn#类nn.Module需要用,损失函数需要用fromtorchimport
- 向量空间与范数
Shockang
机器学习数学通关指南人工智能机器学习数学线性代数
前言本文隶属于专栏《机器学习数学通关指南》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!本专栏目录结构和参考文献请见《机器学习数学通关指南》ima知识库知识库广场搜索:知识库创建人机器学习@Shockang机器学习数学基础@Shockang深度学习@Shockang正文一、向量空间:机器学习的舞台1.1定义与核心要素️向量空间是机器学习的数学基础,它提供了描述和处理高
- 互信息详解
Shockang
机器学习数学通关指南机器学习人工智能数学信息论
前言本文隶属于专栏《机器学习数学通关指南》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!本专栏目录结构和参考文献请见《机器学习数学通关指南》ima知识库知识库广场搜索:知识库创建人机器学习@Shockang机器学习数学基础@Shockang深度学习@Shockang正文互信息:变量间关联性的量化利器互信息(MutualInformation)是信息论中的核心概念,也是
- 《自然语言处理实战入门》深度学习 ---- 预训练模型初探
shiter
AI重制版】预训练NLP自然语言处理
文章大纲前言预训练模型简介语言表示学习神经上下文编码器为何需要预训练模型发展历史主流预训练模型预训练模型与分类将PTMs应用至下游任务微调策略未来研究方向参考文献前言随着深度学习的发展,各种神经网络被广泛用于解决自然语言处理(NLP)任务,如卷积神经网络(convolutionalneuralnetworks,CNNs)、递归神经网络(neuralnetworks,RNNs)、基于图的神经网络(g
- 【基于KG的大模型对话系统(fastapi)完整可上手】
放飞自我的Coder
pythonfastapikg
以下是一个使用FastAPI搭建的基于知识图谱的大模型对话系统的示例代码。该系统包括:FastAPI服务器:提供RESTfulAPI。知识图谱:使用Neo4j作为存储和查询引擎。大模型:利用OpenAIGPT进行自然语言处理。查询解析:将用户输入解析为知识图谱查询,并结合LLM生成回答。主要功能:解析用户输入:检查用户输入是否包含知识图谱查询内容。执行Cypher查询:如果用户问题涉及知识图谱,向
- 【AI深度学习网络】Transformer时代,RNN(循环神经网络)为何仍是时序建模的“秘密武器”?
arbboter
人工智能rnn人工智能深度学习循环神经网络记忆序列数据循环连接
引言:什么是循环神经网络(RNN)?循环神经网络(RecurrentNeuralNetwork,RNN)是一种专门处理序列数据(如文本、语音、时间序列)的深度学习模型。与传统神经网络不同,RNN具有“记忆”能力,能够通过内部状态(隐藏状态)保留历史信息,从而捕捉序列中的时间依赖关系。在自然语言处理、语音识别、时间序列预测等领域,数据本质上是序列化的——即当前数据点与前后数据点存在依赖关系。传统的前
- 《高效迁移学习:Keras与EfficientNet花卉分类项目全解析》
机器学习司猫白
深度学习迁移学习keras分类tensorflowefficientnet性能优化
从零到精通的迁移学习实战指南:以Keras和EfficientNet为例一、为什么我们需要迁移学习?1.1人类的学习智慧想象一下:如果一个已经会弹钢琴的人学习吉他,会比完全不懂音乐的人快得多。因为TA已经掌握了乐理知识、节奏感和手指灵活性,这些都可以迁移到新乐器的学习中。这正是迁移学习(TransferLearning)的核心思想——将已掌握的知识迁移到新任务中。1.2深度学习的困境与破局传统深度
- 多模态大模型:技术原理与实战 模型压缩实战
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
多模态大模型:技术原理与实战模型压缩实战作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:多模态大模型,技术原理,模型压缩,实战,TensorFlow,PyTorch,模型压缩方法,应用场景1.背景介绍1.1问题的由来随着人工智能技术的飞速发展,多模态大模型在图像识别、语音识别、自然语言处理等领域的应用越来越广泛。然而,多模态大模型通常具有庞大
- 无人机动态追踪技术难点与距离分析!
云卓SKYDROID
无人机人工智能云卓科技智能跟踪吊舱
一、技术难点概述目标识别与跟踪算法的鲁棒性复杂场景适应性**:在动态背景(如人群、森林)或光照变化(逆光、夜间)下,算法需精准区分目标与干扰物。传统计算机视觉方法(如光流法、卡尔曼滤波)易受干扰,需结合深度学习(如YOLO、SiamRPN++)提升抗干扰能力。多目标跟踪与遮挡处理**:目标被遮挡或短暂消失时,需通过轨迹预测或特征匹配恢复跟踪,对算法的记忆能力和实时性要求极高。实时性要求**:算法需
- 第20周:Pytorch文本分类入门
weixin_46620278
pytorch分类人工智能
目录前言一、前期准备1.1环境安装导入包1.2加载数据1.3构建词典1.4生成数据批次和迭代器二、准备模型2.1定义模型2.2定义示例2.3定义训练函数与评估函数三、训练模型3.1拆分数据集并运行模型3.2使用测试数据集评估模型总结前言本文为[365天深度学习训练营]中的学习记录博客原作者:[K同学啊]说在前面本周任务:了解文本分类的基本流程、学习常用数据清洗方法、学习如何使用jieba实现英文分
- 第N2周:构建词典
OreoCC
NLP
本人往期文章可查阅:深度学习总结我的环境:语言环境:Python3.11编译器:PyCharm深度学习环境:Pytorchtorch==2.0.0+cu118torchvision==0.18.1+cu118显卡:NVIDIAGeForceGTX1660本周任务:使用N1周的.txt文件构建词典,停用词请自定义1.导入数据fromtorchtext.vocabimportbuild_vocab_f
- 第N3周:NLP中的数据集构建
OreoCC
自然语言处理深度学习pytorch
本人往期文章可查阅:深度学习总结对于初学者,NLP中最烦人的问题之一就是数据集的构建问题,处理不好就会引起shape问题(各种由于shape错乱导致的问题)。这里我给出一个模板,大家可根据这个模板来构建。torch.utils.data是PyTorch中用于数据加载和预处理的模块。其中包括Dataset和DataLoader两个类,它们通常结合使用来加载和处理数据。1.Datasettorch.u
- Pytorch 张量的scatter_add_方法介绍
qq_27390023
pytorch人工智能python
torch.Tensor.scatter_add_是PyTorch中的一个原地操作(in-placeoperation),用于将一个源张量(src)中的值根据指定的索引(index)累加到目标张量(self)中。它常用于分布式计算、加权聚合以及自定义深度学习层等场景。函数签名Tensor.scatter_add_(dim,index,src)→Tensor参数说明dim(int):指定沿着哪个维度
- NLP新手入门-第N1周:Pytorch文本分类入门
Oaix Nay
365天深度学习训练记录pytorch自然语言处理分类
本文为365天深度学习训练营中的学习记录博客原作者:K同学啊|接辅导、项目定制目录一、课题背景和开发环境二、环境安装三、文本分类1.加载数据2.构建词典3.生成数据批次和迭代器4.定义模型5.定义实例6.定义训练函数与评估函数7.拆分数据集并运行模型8.使用测试数据集评估模型一、课题背景和开发环境第N1周:Pytorch文本分类入门Python3.8.12pytorch==1.8.1+cu111t
- 基于PyTorch的深度学习5—神经网络工具箱
Wis4e
深度学习pytorch神经网络
nn.Module是nn的一个核心数据结构,它可以是神经网络的某个层(Layer),也可以是包含多层的神经网络。在实际使用中,最常见的做法是继承nn.Module,生成自己的网络/层。nn中已实现了绝大多数层,包括全连接层、损失层、激活层、卷积层、循环层等,这些层都是nn.Module的子类,能够自动检测到自己的Parameter,并将其作为学习参数,且针对GPU运行进行了cuDNN优化。nn中的
- 基于Pytorch深度学习——Softmax回归
EchoToMe
深度学习pytorch回归python
本文章来源于对李沐动手深度学习代码以及原理的理解,并且由于李沐老师的代码能力很强,以及视频中讲解代码的部分较少,所以这里将代码进行尽量逐行详细解释并且由于pytorch的语法有些小伙伴可能并不熟悉,所以我们会采用逐行解释+小实验的方式来给大家解释代码大家都知道二分类问题我们在机器学习里面使用到的是逻辑回归这个算法,但是针对于多分类问题,我们常用的是Softmax技术,大家不要被这个名字给迷惑了,s
- 在pytorch中的卷积操作
FY_2018
卷积操作:#1.卷积核的输入通道数与输入数据的通道数保持一致,所以卷积核的对应通道与输入数据的对应通道进行卷积操作,以卷积核conv_i为例:#2.卷积核conv_i的对应通道与输入数据对应通道进行对应位置元素的乘法,即用乘法操作“*”,得到一个与卷积核形状一样的矩阵M#3.将第2步中卷积结果矩阵M中的所有元素相加,得到卷积核conv_i在当前通道的卷积结果:标量su_i#4.卷积核conv_i的
- Python 在深度学习中的应用
2501_90435375
人工智能python深度学习开发语言
深度学习是机器学习的一个分支,它通过构建和训练深层神经网络来实现对数据的学习和理解。Python作为一种简洁、易读、功能强大的编程语言,在深度学习领域得到了广泛的应用。本文将详细介绍Python在深度学习中的应用,包括深度学习的基础概念、Python深度学习库和框架、实际案例。二、深度学习的基础概念1.神经网络神经网络是深度学习的基础,它由多个神经元组成,每个神经元接收输入信号,进行加权求和,并通
- [Pytorch报错问题解决]AttributeError: ‘nn.Sequential‘ object has no attribute ‘append‘
Bartender_Jill
编程报错解决pytorch人工智能python
问题运行深度学习代码的时候遇到了以下报错问题:Traceback(mostrecentcalllast):File"/home/anaconda3/envs/Text2HOI/lib/python3.9/site-packages/torch/autograd/grad_mode.py",line28,indecorate_contextreturnfunc(*args,**kwargs)File
- Bert的使用
巨鹿..
深度学习记录bert人工智能深度学习
一、Data.py#data负责产生两个dataloaderfromtorch.utils.dataimportDataLoader,Datasetfromsklearn.model_selectionimporttrain_test_split#给X,Y和分割比例,分割出来一个训练集和验证机的X,Yimporttorchdefread_file(path):data=[]label=[]with
- 基于PyTorch的深度学习——机器学习1
Wis4e
深度学习机器学习pytorch
监督学习是最常见的一种机器学习类型,其任务的特点就是给定学习目标,这个学习目标又称标签、标注或实际值等,整个学习过程就是围绕如何使预测与目标更接近而来的。近些年,随着深度学习的发展,分类除传统的二分类、多分类、多标签分类之外,也出现了一些新内容,如目标检测、目标识别、图像分割等监督学习的重要内容半监督学习是监督学习与无监督学习相结合的一种学习方法。半监督学习使用大量的未标记数据,同时由部分使用标记
- knob UI插件使用
换个号韩国红果果
JavaScriptjsonpknob
图形是用canvas绘制的
js代码
var paras = {
max:800,
min:100,
skin:'tron',//button type
thickness:.3,//button width
width:'200',//define canvas width.,canvas height
displayInput:'tr
- Android+Jquery Mobile学习系列(5)-SQLite数据库
白糖_
JQuery Mobile
目录导航
SQLite是轻量级的、嵌入式的、关系型数据库,目前已经在iPhone、Android等手机系统中使用,SQLite可移植性好,很容易使用,很小,高效而且可靠。
因为Android已经集成了SQLite,所以开发人员无需引入任何JAR包,而且Android也针对SQLite封装了专属的API,调用起来非常快捷方便。
我也是第一次接触S
- impala-2.1.2-CDH5.3.2
dayutianfei
impala
最近在整理impala编译的东西,简单记录几个要点:
根据官网的信息(https://github.com/cloudera/Impala/wiki/How-to-build-Impala):
1. 首次编译impala,推荐使用命令:
${IMPALA_HOME}/buildall.sh -skiptests -build_shared_libs -format
2.仅编译BE
${I
- 求二进制数中1的个数
周凡杨
java算法二进制
解法一:
对于一个正整数如果是偶数,该数的二进制数的最后一位是 0 ,反之若是奇数,则该数的二进制数的最后一位是 1 。因此,可以考虑利用位移、判断奇偶来实现。
public int bitCount(int x){
int count = 0;
while(x!=0){
if(x%2!=0){ /
- spring中hibernate及事务配置
g21121
Hibernate
hibernate的sessionFactory配置:
<!-- hibernate sessionFactory配置 -->
<bean id="sessionFactory"
class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">
<
- log4j.properties 使用
510888780
log4j
log4j.properties 使用
一.参数意义说明
输出级别的种类
ERROR、WARN、INFO、DEBUG
ERROR 为严重错误 主要是程序的错误
WARN 为一般警告,比如session丢失
INFO 为一般要显示的信息,比如登录登出
DEBUG 为程序的调试信息
配置日志信息输出目的地
log4j.appender.appenderName = fully.qua
- Spring mvc-jfreeChart柱图(2)
布衣凌宇
jfreechart
上一篇中生成的图是静态的,这篇将按条件进行搜索,并统计成图表,左面为统计图,右面显示搜索出的结果。
第一步:导包
第二步;配置web.xml(上一篇有代码)
建BarRenderer类用于柱子颜色
import java.awt.Color;
import java.awt.Paint;
import org.jfree.chart.renderer.category.BarR
- 我的spring学习笔记14-容器扩展点之PropertyPlaceholderConfigurer
aijuans
Spring3
PropertyPlaceholderConfigurer是个bean工厂后置处理器的实现,也就是BeanFactoryPostProcessor接口的一个实现。关于BeanFactoryPostProcessor和BeanPostProcessor类似。我会在其他地方介绍。
PropertyPlaceholderConfigurer可以将上下文(配置文件)中的属性值放在另一个单独的标准java
- maven 之 cobertura 简单使用
antlove
maventestunitcoberturareport
1. 创建一个maven项目
2. 创建com.CoberturaStart.java
package com;
public class CoberturaStart {
public void helloEveryone(){
System.out.println("=================================================
- 程序的执行顺序
百合不是茶
JAVA执行顺序
刚在看java核心技术时发现对java的执行顺序不是很明白了,百度一下也没有找到适合自己的资料,所以就简单的回顾一下吧
代码如下;
经典的程序执行面试题
//关于程序执行的顺序
//例如:
//定义一个基类
public class A(){
public A(
- 设置session失效的几种方法
bijian1013
web.xmlsession失效监听器
在系统登录后,都会设置一个当前session失效的时间,以确保在用户长时间不与服务器交互,自动退出登录,销毁session。具体设置很简单,方法有三种:(1)在主页面或者公共页面中加入:session.setMaxInactiveInterval(900);参数900单位是秒,即在没有活动15分钟后,session将失效。这里要注意这个session设置的时间是根据服务器来计算的,而不是客户端。所
- java jvm常用命令工具
bijian1013
javajvm
一.概述
程序运行中经常会遇到各种问题,定位问题时通常需要综合各种信息,如系统日志、堆dump文件、线程dump文件、GC日志等。通过虚拟机监控和诊断工具可以帮忙我们快速获取、分析需要的数据,进而提高问题解决速度。 本文将介绍虚拟机常用监控和问题诊断命令工具的使用方法,主要包含以下工具:
&nbs
- 【Spring框架一】Spring常用注解之Autowired和Resource注解
bit1129
Spring常用注解
Spring自从2.0引入注解的方式取代XML配置的方式来做IOC之后,对Spring一些常用注解的含义行为一直处于比较模糊的状态,写几篇总结下Spring常用的注解。本篇包含的注解有如下几个:
Autowired
Resource
Component
Service
Controller
Transactional
根据它们的功能、目的,可以分为三组,Autow
- mysql 操作遇到safe update mode问题
bitray
update
我并不知道出现这个问题的实际原理,只是通过其他朋友的博客,文章得知的一个解决方案,目前先记录一个解决方法,未来要是真了解以后,还会继续补全.
在mysql5中有一个safe update mode,这个模式让sql操作更加安全,据说要求有where条件,防止全表更新操作.如果必须要进行全表操作,我们可以执行
SET
- nginx_perl试用
ronin47
nginx_perl试用
因为空闲时间比较多,所以在CPAN上乱翻,看到了nginx_perl这个项目(原名Nginx::Engine),现在托管在github.com上。地址见:https://github.com/zzzcpan/nginx-perl
这个模块的目的,是在nginx内置官方perl模块的基础上,实现一系列异步非阻塞的api。用connector/writer/reader完成类似proxy的功能(这里
- java-63-在字符串中删除特定的字符
bylijinnan
java
public class DeleteSpecificChars {
/**
* Q 63 在字符串中删除特定的字符
* 输入两个字符串,从第一字符串中删除第二个字符串中所有的字符。
* 例如,输入”They are students.”和”aeiou”,则删除之后的第一个字符串变成”Thy r stdnts.”
*/
public static voi
- EffectiveJava--创建和销毁对象
ccii
创建和销毁对象
本章内容:
1. 考虑用静态工厂方法代替构造器
2. 遇到多个构造器参数时要考虑用构建器(Builder模式)
3. 用私有构造器或者枚举类型强化Singleton属性
4. 通过私有构造器强化不可实例化的能力
5. 避免创建不必要的对象
6. 消除过期的对象引用
7. 避免使用终结方法
1. 考虑用静态工厂方法代替构造器
类可以通过
- [宇宙时代]四边形理论与光速飞行
comsci
从四边形理论来推论 为什么光子飞船必须获得星光信号才能够进行光速飞行?
一组星体组成星座 向空间辐射一组由复杂星光信号组成的辐射频带,按照四边形-频率假说 一组频率就代表一个时空的入口
那么这种由星光信号组成的辐射频带就代表由这些星体所控制的时空通道,该时空通道在三维空间的投影是一
- ubuntu server下python脚本迁移数据
cywhoyi
pythonKettlepymysqlcx_Oracleubuntu server
因为是在Ubuntu下,所以安装python、pip、pymysql等都极其方便,sudo apt-get install pymysql,
但是在安装cx_Oracle(连接oracle的模块)出现许多问题,查阅相关资料,发现这边文章能够帮我解决,希望大家少走点弯路。http://www.tbdazhe.com/archives/602
1.安装python
2.安装pip、pymysql
- Ajax正确但是请求不到值解决方案
dashuaifu
Ajaxasync
Ajax正确但是请求不到值解决方案
解决方案:1 . async: false , 2. 设置延时执行js里的ajax或者延时后台java方法!!!!!!!
例如:
$.ajax({ &
- windows安装配置php+memcached
dcj3sjt126com
PHPInstallmemcache
Windows下Memcached的安装配置方法
1、将第一个包解压放某个盘下面,比如在c:\memcached。
2、在终端(也即cmd命令界面)下输入 'c:\memcached\memcached.exe -d install' 安装。
3、再输入: 'c:\memcached\memcached.exe -d start' 启动。(需要注意的: 以后memcached将作为windo
- iOS开发学习路径的一些建议
dcj3sjt126com
ios
iOS论坛里有朋友要求回答帖子,帖子的标题是: 想学IOS开发高阶一点的东西,从何开始,然后我吧啦吧啦回答写了很多。既然敲了那么多字,我就把我写的回复也贴到博客里来分享,希望能对大家有帮助。欢迎大家也到帖子里讨论和分享,地址:http://bbs.csdn.net/topics/390920759
下面是我回复的内容:
结合自己情况聊下iOS学习建议,
- Javascript闭包概念
fanfanlovey
JavaScript闭包
1.参考资料
http://www.jb51.net/article/24101.htm
http://blog.csdn.net/yn49782026/article/details/8549462
2.内容概述
要理解闭包,首先需要理解变量作用域问题
内部函数可以饮用外面全局变量
var n=999;
functio
- yum安装mysql5.6
haisheng
mysql
1、安装http://dev.mysql.com/get/mysql-community-release-el7-5.noarch.rpm
2、yum install mysql
3、yum install mysql-server
4、vi /etc/my.cnf 添加character_set_server=utf8
- po/bo/vo/dao/pojo的详介
IT_zhlp80
javaBOVODAOPOJOpo
JAVA几种对象的解释
PO:persistant object持久对象,可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作.
VO:value object值对象。通常用于业务层之间的数据传递,和PO一样也是仅仅包含数据而已。但应是抽象出的业务对象,可
- java设计模式
kerryg
java设计模式
设计模式的分类:
一、 设计模式总体分为三大类:
1、创建型模式(5种):工厂方法模式,抽象工厂模式,单例模式,建造者模式,原型模式。
2、结构型模式(7种):适配器模式,装饰器模式,代理模式,外观模式,桥接模式,组合模式,享元模式。
3、行为型模式(11种):策略模式,模版方法模式,观察者模式,迭代子模式,责任链模式,命令模式,备忘录模式,状态模式,访问者
- [1]CXF3.1整合Spring开发webservice——helloworld篇
木头.java
springwebserviceCXF
Spring 版本3.2.10
CXF 版本3.1.1
项目采用MAVEN组织依赖jar
我这里是有parent的pom,为了简洁明了,我直接把所有的依赖都列一起了,所以都没version,反正上面已经写了版本
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="ht
- Google 工程师亲授:菜鸟开发者一定要投资的十大目标
qindongliang1922
工作感悟人生
身为软件开发者,有什么是一定得投资的? Google 软件工程师 Emanuel Saringan 整理了十项他认为必要的投资,第一项就是身体健康,英文与数学也都是必备能力吗?来看看他怎么说。(以下文字以作者第一人称撰写)) 你的健康 无疑地,软件开发者是世界上最久坐不动的职业之一。 每天连坐八到十六小时,休息时间只有一点点,绝对会让你的鲔鱼肚肆无忌惮的生长。肥胖容易扩大罹患其他疾病的风险,
- linux打开最大文件数量1,048,576
tianzhihehe
clinux
File descriptors are represented by the C int type. Not using a special type is often considered odd, but is, historically, the Unix way. Each Linux process has a maximum number of files th
- java语言中PO、VO、DAO、BO、POJO几种对象的解释
衞酆夼
javaVOBOPOJOpo
PO:persistant object持久对象
最形象的理解就是一个PO就是数据库中的一条记录。好处是可以把一条记录作为一个对象处理,可以方便的转为其它对象。可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作。
BO:business object业务对象
封装业务逻辑的java对象