最快的判断素数的方法

一个关于质数分布的规律:大于等于5的质数一定和6的倍数相邻。例如5和7,11和13,17和19等等;

证明:令x≥1,将大于等于5的自然数表示如下:

··· 6x-1,6x,6x+1,6x+2,6x+3,6x+4,6x+5,6(x+1),6(x+1)+1 ···

可以看到,不和6的倍数相邻的数为6x+2,6x+3,6x+4,由于2(3x+1),3(2x+1),2(3x+2),所以它们一定不是素数,再除去6x本身,显然,素数要出现只可能出现在6x的相邻两侧。因此在5到sqrt(n)中每6个数只判断2个,时间复杂度O(sqrt(n)/3)。

int isPrime(int n)
{	
	float n_sqrt;
    if(n==1) return 0;
	if(n==2 || n==3) return 1;
	if(n%6!=1 && n%6!=5) return 0;
	n_sqrt=floor(sqrt((float)n));
	for(int i=5;i<=n_sqrt;i+=6)
	{
	    if(n%(i)==0 | n%(i+2)==0) return 0;
	}
        return 1;
} 

你可能感兴趣的:(算法,c++,开发语言)