上一篇博客中写了如何搭建基础的CNN网络,然后我又学习了比基本高级一点的神经网络框架,Inception框架,这个框架的核心作用就是不需要人为决定使用哪个过滤器,或者是够需要池化,而是由网络自己决定这些参数,你可以给网络添加这些参数可能的值,然后把这些输出连接起来,让网络自己学习这些参数,网络自己决定采用哪些过滤器组合。
这篇博客利用Inception网络来训练mnist数据集,关键在于如何搭建Inception那个部分的网络架构。
从上面这张图片中可以看出,共有四个部分组成,经过这四个部分之后,会形成24+24+24+16=88个通道,这是这个网络的关键点,也是有助于后面计算维度。
import torch
from torchvision import datasets
from torchvision import transforms
import torch.nn.functional as F
from torch.utils.data import DataLoader
#数据增强
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,),(0.3081,))
])
#下载数据集
train_dataset = datasets.MNIST(
root='../dataset/mnist',
download=False,
train=True,
transform=transform
)
test_dataset = datasets.MNIST(
root='../dataset/mnist',
download=False,
train=False,
transform=transform
)
#构造数据集
train_loader = DataLoader(
dataset=train_dataset,
batch_size=64,
shuffle=True
)
test_loader = DataLoader(
dataset=test_dataset,
batch_size=64,
shuffle=True
)
这一部分和上一篇博客中的导入数据部分一样,利用pytorch中的datasets和DataLoader构造训练集和测试集。
这是这一篇博客的重点,这也是我模仿者写代码的过程,自己一开始肯定不会写的。
#盗梦空间网络结构Inception
class InceptionA(torch.nn.Module):
def __init__(self,in_channels):
super(InceptionA,self).__init__()
#第一个分支 1*1 输出通道数16
self.branch1x1 = torch.nn.Conv2d(in_channels,16,kernel_size=1)
#第二个分支 输出通道数24
self.branch5x5_1 = torch.nn.Conv2d(in_channels,16,kernel_size=1)
self.branch5x5_2 = torch.nn.Conv2d(16,24,kernel_size=5,padding=2)
#第三个分支 输出通道数24
self.branch3x3_1 = torch.nn.Conv2d(in_channels,16,kernel_size=1)
self.branch3x3_2 = torch.nn.Conv2d(16,24,kernel_size=3,padding=1)
self.branch3x3_3 = torch.nn.Conv2d(24,24,kernel_size=3,padding=1)
#第四个分支 输出通道数 24
self.branch_pool = torch.nn.Conv2d(in_channels,24,kernel_size=1)
def forward(self,x):
brach1x1 = self.branch1x1(x)
brach5x5 = self.branch5x5_1(x)
brach5x5 = self.branch5x5_2(brach5x5)
branch3x3 = self.branch3x3_1(x)
branch3x3 = self.branch3x3_2(branch3x3)
branch3x3 = self.branch3x3_3(branch3x3)
branch_pool = F.avg_pool2d(x,kernel_size=3,stride = 1,padding = 1)
branch_pool = self.branch_pool(branch_pool)
output = [brach1x1,brach5x5,branch3x3,branch_pool]
return torch.cat(output,dim=1)
这个Inception部分代码具有重用性,因为再构造这个对象时,传入的参数是根据所搭建的模型而设置的,比如,网络给Inception传入通道数字为10,或者为20,都能满足情况,但是经过Inception模块,都会产生88个通道。
#第一个分支 1*1 输出通道数16
self.branch1x1 = torch.nn.Conv2d(in_channels,16,kernel_size=1)
第一个分支很简单,就是输入通道需要传入Inception,输出通道数是16,卷积核的大小是1*1,经过这样的卷积层,会产生16个通道,宽度和高度不变
#第二个分支 输出通道数24
self.branch5x5_1 = torch.nn.Conv2d(in_channels,16,kernel_size=1)
self.branch5x5_2 = torch.nn.Conv2d(16,24,kernel_size=5,padding=2)
第二个分支有两个卷积层,第一个卷积层和第一个部分一样,都需要传入一个初始的通道数,输出通道为16,再Inception结构图中也能体现出来;第二个卷积层,使用的是same卷积,输入的高和宽经过卷积之后不变,这里有个小技巧,如何构造same卷积,当卷积核的大小为m是,padding为m/2即可,结果向下取整,输出通道数为88。
#第三个分支 输出通道数24
self.branch3x3_1 = torch.nn.Conv2d(in_channels,16,kernel_size=1)
self.branch3x3_2 = torch.nn.Conv2d(16,24,kernel_size=3,padding=1)
self.branch3x3_3 = torch.nn.Conv2d(24,24,kernel_size=3,padding=1)
第三个分支有三个卷积层,第一个卷积是1*1卷积,第二个卷积和第三个卷积都是same卷积。
#第四个分支 输出通道数 24
self.branch_pool = torch.nn.Conv2d(in_channels,24,kernel_size=1)
第四个分支是same池化,池化本来不改变通道数,但是,先利用same池化,然后利用1*1卷积改变通道数。
#构建网络
class Net(torch.nn.Module):
def __init__(self):
super(Net,self).__init__()
self.conv1 = torch.nn.Conv2d(1,10,kernel_size=5)
self.conv2 = torch.nn.Conv2d(88,20,kernel_size=5)
self.incep1 = InceptionA(in_channels=10)
self.incep2 = InceptionA(in_channels=20)
self.mp = torch.nn.MaxPool2d(2)
self.fc = torch.nn.Linear(1408,10)
def forward(self,x):
batch_size = x.size(0)
x = self.mp(F.relu(self.conv1(x)))
x = self.incep1(x)
x = self.mp(F.relu(self.conv2(x)))
x = self.incep2(x)
x = x.view(batch_size,-1)
x = self.fc(x)
return x
model = Net()
如何算理解模型,就是那一张图片放入模型中,计算出每一部分维度。
#构建损失器
criterion = torch.nn.CrossEntropyLoss()
#构建优化器
optimizer = torch.optim.SGD(model.parameters(),lr=0.01,momentum=0.5)
#训练网络
def train(epoch):
runing_loss = 0
for batchix,datas in enumerate(train_loader,0):
inputs,label = datas
optimizer.zero_grad()
output = model(inputs)
loss = criterion(output,label)
loss.backward()
optimizer.step()
runing_loss +=loss.item()
if batchix%300 == 299:
print('[%d %3d] %.3f'%(epoch+1,batchix+1,runing_loss/300))
runing_loss = 0
#测试网络
def test():
total = 0
correct = 0
with torch.no_grad():
for data in test_loader:
inputs,label = data
outputs = model(inputs)
_,pre = torch.max(outputs,dim=1)
total += label.size(0)
correct += (pre==label).sum().item()
print('准确率为%.3f%%' % (correct / total * 100))
if __name__ == '__main__':
for epoch in range(10):
train(epoch)
test()
import torch
from torchvision import datasets
from torchvision import transforms
import torch.nn.functional as F
from torch.utils.data import DataLoader
#数据增强
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,),(0.3081,))
])
#下载数据集
train_dataset = datasets.MNIST(
root='../dataset/mnist',
download=False,
train=True,
transform=transform
)
test_dataset = datasets.MNIST(
root='../dataset/mnist',
download=False,
train=False,
transform=transform
)
#构造数据集
train_loader = DataLoader(
dataset=train_dataset,
batch_size=64,
shuffle=True
)
test_loader = DataLoader(
dataset=test_dataset,
batch_size=64,
shuffle=True
)
#盗梦空间网络结构Inception
class InceptionA(torch.nn.Module):
def __init__(self,in_channels):
super(InceptionA,self).__init__()
#第一个分支 1*1 输出通道数16
self.branch1x1 = torch.nn.Conv2d(in_channels,16,kernel_size=1)
#第二个分支 输出通道数24
self.branch5x5_1 = torch.nn.Conv2d(in_channels,16,kernel_size=1)
self.branch5x5_2 = torch.nn.Conv2d(16,24,kernel_size=5,padding=2)
#第三个分支 输出通道数24
self.branch3x3_1 = torch.nn.Conv2d(in_channels,16,kernel_size=1)
self.branch3x3_2 = torch.nn.Conv2d(16,24,kernel_size=3,padding=1)
self.branch3x3_3 = torch.nn.Conv2d(24,24,kernel_size=3,padding=1)
#第四个分支 输出通道数 24
self.branch_pool = torch.nn.Conv2d(in_channels,24,kernel_size=1)
def forward(self,x):
brach1x1 = self.branch1x1(x)
brach5x5 = self.branch5x5_1(x)
brach5x5 = self.branch5x5_2(brach5x5)
branch3x3 = self.branch3x3_1(x)
branch3x3 = self.branch3x3_2(branch3x3)
branch3x3 = self.branch3x3_3(branch3x3)
branch_pool = F.avg_pool2d(x,kernel_size=3,stride = 1,padding = 1)
branch_pool = self.branch_pool(branch_pool)
output = [brach1x1,brach5x5,branch3x3,branch_pool]
return torch.cat(output,dim=1)
#构建网络
class Net(torch.nn.Module):
def __init__(self):
super(Net,self).__init__()
self.conv1 = torch.nn.Conv2d(1,10,kernel_size=5)
self.conv2 = torch.nn.Conv2d(88,20,kernel_size=5)
self.incep1 = InceptionA(in_channels=10)
self.incep2 = InceptionA(in_channels=20)
self.mp = torch.nn.MaxPool2d(2)
self.fc = torch.nn.Linear(1408,10)
def forward(self,x):
batch_size = x.size(0)
x = self.mp(F.relu(self.conv1(x)))
x = self.incep1(x)
x = self.mp(F.relu(self.conv2(x)))
x = self.incep2(x)
x = x.view(batch_size,-1)
x = self.fc(x)
return x
model = Net()
print(model)
#构建损失器
criterion = torch.nn.CrossEntropyLoss()
#构建优化器
optimizer = torch.optim.SGD(model.parameters(),lr=0.01,momentum=0.5)
#训练网络
def train(epoch):
runing_loss = 0
for batchix,datas in enumerate(train_loader,0):
inputs,label = datas
optimizer.zero_grad()
output = model(inputs)
loss = criterion(output,label)
loss.backward()
optimizer.step()
runing_loss +=loss.item()
if batchix%300 == 299:
print('[%d %3d] %.3f'%(epoch+1,batchix+1,runing_loss/300))
runing_loss = 0
#测试网络
def test():
total = 0
correct = 0
with torch.no_grad():
for data in test_loader:
inputs,label = data
outputs = model(inputs)
_,pre = torch.max(outputs,dim=1)
total += label.size(0)
correct += (pre==label).sum().item()
print('准确率为%.3f%%' % (correct / total * 100))
if __name__ == '__main__':
for epoch in range(10):
train(epoch)
test()
学了这几天的网络模型,感觉深度学习就像搭积木一样,最终看谁能把积木搭的最出色。。。。