import os
from importlib import import_module
import torch
import torch.nn as nn
from torch.autograd import Variable
class Model(nn.Module):
def __init__(self, args, ckp):
super(Model, self).__init__()
print('Making model...')
self.scale = args.scale
self.idx_scale = 0
self.self_ensemble = args.self_ensemble
self.chop = args.chop
self.precision = args.precision
self.cpu = args.cpu
self.device = torch.device('cpu' if args.cpu else 'cuda')
self.n_GPUs = args.n_GPUs
self.save_models = args.save_models
self.enable_branches = args.enable_branches
if not args.enable_branches:
module = import_module('model.' + args.model.lower())
self.model = module.make_model(args).to(self.device)
else:
module = import_module('model.rrl')
self.model = module.make_model(args, ckp).to(self.device)
if args.precision == 'half': self.model.half()
if not args.cpu and args.n_GPUs > 1:
self.model = nn.DataParallel(self.model, range(args.n_GPUs))
if args.print_model: print(self.model)
self.load(
ckp.dir,
pre_train=args.pre_train,
resume=args.resume,
cpu=args.cpu,
pre_train2=args.master_branch_pretrain
)
def forward(self, x, idx_scale, train=False):
self.idx_scale = idx_scale
target = self.get_model()
if hasattr(target, 'set_scale'):
target.set_scale(idx_scale)
if self.enable_branches:
kwargs = {'train':train}
else:
kwargs = {}
if self.self_ensemble and not self.training:
if self.chop:
forward_function = self.forward_chop
else:
forward_function = self.model.forward
return self.forward_x8(x, forward_function)
elif self.chop and not self.training:
return self.forward_chop(x, **kwargs)
else:
return self.model(x, **kwargs)
def get_model(self):
if self.n_GPUs == 1:
return self.model
else:
return self.model.module
def state_dict(self, **kwargs):
target = self.get_model()
return target.state_dict(**kwargs)
def save(self, apath, epoch, is_best=False):
target = self.get_model()
torch.save(
target.state_dict(),
os.path.join(apath, 'model', 'model_latest.pt')
)
if is_best:
torch.save(
target.state_dict(),
os.path.join(apath, 'model', 'model_best.pt')
)
if self.save_models:
torch.save(
target.state_dict(),
os.path.join(apath, 'model', 'model_{}.pt'.format(epoch))
)
def load(self, apath, pre_train='.', resume=-1, cpu=False, pre_train2='.'):
if cpu:
kwargs = {'map_location': lambda storage, loc: storage}
else:
kwargs = {}
if resume == -1:
self.get_model().load_state_dict(
torch.load(
os.path.join(apath, 'model', 'model_latest.pt'),
**kwargs
),
strict=True
)
elif resume == 0:
if pre_train != '.':
print('Loading model from {}'.format(pre_train))
self.get_model().load_state_dict(
torch.load(pre_train, **kwargs),
strict=True
)
if pre_train2 != '.':
print('Loading master branch from {}'.format(pre_train2))
self.get_model().load_master_state_dict(
torch.load(pre_train2, **kwargs),
strict=True
)
else:
self.get_model().load_state_dict(
torch.load(
os.path.join(apath, 'model', 'model_{}.pt'.format(resume)),
**kwargs
),
strict=True
)
def forward_chop(self, x, shave=10, min_size=160000, train=False):
def _join(sr_list,x,b,c,h,w,h_half,w_half,h_size,w_size):
output = x.new(b, c, h, w)
output[:, :, 0:h_half, 0:w_half] \
= sr_list[0][:, :, 0:h_half, 0:w_half]
output[:, :, 0:h_half, w_half:w] \
= sr_list[1][:, :, 0:h_half, (w_size - w + w_half):w_size]
output[:, :, h_half:h, 0:w_half] \
= sr_list[2][:, :, (h_size - h + h_half):h_size, 0:w_half]
output[:, :, h_half:h, w_half:w] \
= sr_list[3][:, :, (h_size - h + h_half):h_size, \
(w_size - w + w_half):w_size]
return output
scale = self.scale[self.idx_scale]
n_GPUs = min(self.n_GPUs, 4)
b, c, h, w = x.size()
h_half, w_half = h // 2, w // 2
h_size, w_size = h_half + shave, w_half + shave
lr_list = [
x[:, :, 0:h_size, 0:w_size],
x[:, :, 0:h_size, (w - w_size):w],
x[:, :, (h - h_size):h, 0:w_size],
x[:, :, (h - h_size):h, (w - w_size):w]]
if w_size * h_size < min_size:
sr_list = []
for i in range(0, 4, n_GPUs):
lr_batch = torch.cat(lr_list[i:(i + n_GPUs)], dim=0)
sr_batch = self.model(lr_batch, train)
sr_list.extend(sr_batch.chunk(n_GPUs, dim=0))
else:
sr_list = [
self.forward_chop(patch, shave=shave, min_size=min_size, train=Train) \
for patch in lr_list
]
h, w = scale * h, scale * w
h_half, w_half = scale * h_half, scale * w_half
h_size, w_size = scale * h_size, scale * w_size
shave *= scale
output = _join(sr_list,x,b,c,h,w,h_half,w_half,h_size,w_size)
return output
def forward_x8(self, x, forward_function):
def _transform(v, op):
if self.precision != 'single': v = v.float()
v2np = v.data.cpu().numpy()
if op == 'v':
tfnp = v2np[:, :, :, ::-1].copy()
elif op == 'h':
tfnp = v2np[:, :, ::-1, :].copy()
elif op == 't':
tfnp = v2np.transpose((0, 1, 3, 2)).copy()
ret = torch.Tensor(tfnp).to(self.device)
if self.precision == 'half': ret = ret.half()
return ret
lr_list = [x]
for tf in 'v', 'h', 't':
lr_list.extend([_transform(t, tf) for t in lr_list])
sr_list = [forward_function(aug) for aug in lr_list]
for i in range(len(sr_list)):
if i > 3:
sr_list[i] = _transform(sr_list[i], 't')
if i % 4 > 1:
sr_list[i] = _transform(sr_list[i], 'h')
if (i % 4) % 2 == 1:
sr_list[i] = _transform(sr_list[i], 'v')
output_cat = torch.cat(sr_list, dim=0)
output = output_cat.mean(dim=0, keepdim=True)
return output