github:GitHub - facebookresearch/TimeSformer: The official pytorch implementation of our paper "Is Space-Time Attention All You Need for Video Understanding?"
直接按照官方步骤安装即可,torchvision在安装pytorch时就一起安装好了,我这里选择安装1.8版本的pytorch,可以根据自己的cuda版本自行选择
pytorch安装:Previous PyTorch Versions | PyTorch
conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cudatoolkit=10.2 -c pytorch
其它的按照官方步骤即可
1、视频提帧
输入模型的是图片,所以需要先对视频提帧并保存(最后输入模型的根据模型具体参数,分别是8,16,32张图片,原始策略是均匀分段选择图片,可以自己更改)
首先需要准备一个存放视频目录的文件,方便进行批量处理,我这里选择生成格式为 视频名+'\t'+视频路径 的txt文件,生成代码如下:
import os
path = '/home/videos' # 要遍历的目录
txt_path = '/home/video.txt'
with open(txt_path, 'w') as f:
for root, dirs, names in os.walk(path):
for name in names:
ext = os.path.splitext(name)[1] # 获取后缀名
if ext == '.mp4':
video_path = os.path.join(root, name) # mp4文件原始地址
video_name = name.split('.')[0]
f.write(video_name+'\t'+video_path+'\n')
得到的txt文件类似如下所示:
vi1231926809 /home/video/vi1231926809.mp4
vi3522215705 home/video/vi3522215705.mp4
vi3172646169 home/video/vi3172646169.mp4
然后用ffmpeg进行视频提帧:
import os
import sys
import subprocess
OUT_DATA_DIR="/home/video_pics"
txt_path = "/home/video.txt"
filelist = []
i = 1
with open(txt_path, 'r', encoding='utf-8') as f:
for line in f:
line = line.rstrip('\n')
video_name = line.split('\t')[0].split('.')[0]
dst_path = os.path.join(OUT_DATA_DIR, video_name)
video_path = line.split('\t')[1]
if not os.path.exists(dst_path):
os.makedirs(dst_path)
print(i)
i += 1
cmd = 'ffmpeg -i \"{}\" -r 1 -q:v 2 -f image2 \"{}/%05d.jpg\"'.format(video_path, dst_path)
subprocess.call(cmd, shell=True,stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
2、修改dataloader
import json
import torchvision
import random
import os
import numpy as np
import torch
import torch.nn.functional as F
import cv2
from torch.utils.data import Dataset
from torch.autograd import Variable
from models.transforms import *
class VideoClassificationDataset(Dataset):
def __init__(self, opt, mode):
# python 3
# super().__init__()
super(VideoClassificationDataset, self).__init__()
self.mode = mode # to load train/val/test data
self.feats_dir = opt['feats_dir']
if self.mode == 'val':
self.n = 5000 #提取的视频数量
if self.mode != 'inference':
print(f'load feats from {self.feats_dir}')
with open(self.feats_dir) as f:
feat_class_list = f.readlines()
self.feat_class_list = feat_class_list
mean =[0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
model_transform_params = {
"side_size": 256,
"crop_size": 224,
"num_segments": 8,
"sampling_rate": 5
}
# Get transform parameters based on model
transform_params = model_transform_params
transform_train = torchvision.transforms.Compose([
GroupMultiScaleCrop(transform_params["crop_size"], [1, .875, .75, .66]),
GroupRandomHorizontalFlip(is_flow=False),
Stack(roll=False),
ToTorchFormatTensor(div=True),
GroupNormalize(mean, std),
])
transform_val = torchvision.transforms.Compose([
GroupScale(int(transform_params["side_size"])),
GroupCenterCrop(transform_params["crop_size"]),
Stack(roll=False),
ToTorchFormatTensor(div=True),
GroupNormalize(mean, std),
])
self.transform_params = transform_params
self.transform_train = transform_train
self.transform_val = transform_val
print("Finished initializing dataloader.")
def __getitem__(self, ix):
"""This function returns a tuple that is further passed to collate_fn
"""
ix = ix % self.n
fc_feat = self._load_video(ix)
data = {
'fc_feats': Variable(fc_feat),
'video_id': ix,
}
return data
def __len__(self):
return self.n
def _load_video(self, idx):
prefix = '{:05d}.jpg'
feat_path_list = []
for i in range(len(self.feat_class_list)):
video_name = self.feat_class_list[i].rstrip('\n').split('\t')[0]+'-'
feat_path = self.feat_class_list[i].rstrip('\n').split('\t')[1]
feat_path_list.append(feat_path)
video_data = {}
if self.mode == 'val':
images = []
frame_list =os.listdir(feat_path_list[idx])
average_duration = len(frame_list) // self.transform_params["num_segments"]
# offests为采样坐标
offsets = np.array([int(average_duration / 2.0 + average_duration * x) for x in range(self.transform_params["num_segments"])])
offsets = offsets + 1
for seg_ind in offsets:
p = int(seg_ind)
seg_imgs = Image.open(os.path.join(feat_path_list[idx], prefix.format(p))).convert('RGB')
images.append(seg_imgs)
video_data = self.transform_val(images)
video_data = video_data.view((-1, self.transform_params["num_segments"]) + video_data.size()[1:])
return video_data
###更正:提取特征时为了保持一致性,加载模型应该用eval()模式,这样同一个视频每次提取的特征是固定不变的。
import argparse
import os
import torch
import numpy as np
from torch.utils.data import DataLoader
import random
from dataloader import VideoClassificationDataset
from timesformer.models.vit import TimeSformer
device = torch.device("cuda:0")
if __name__ == '__main__':
opt = argparse.ArgumentParser()
opt.add_argument('test_list_dir', help="Directory where test features are stored.")
opt = vars(opt.parse_args())
test_opts = {'feats_dir': opt['test_list_dir']}
# =================模型建立======================
model = TimeSformer(img_size=224, num_classes=400, num_frames=8, attention_type='divided_space_time',
pretrained_model='/home/user04/extract_feature/TimeSformer_divST_8x32_224_K400.pyth')
model = model.eval().to(device)
print(model)
# ================数据加载========================
print("Use", torch.cuda.device_count(), 'gpus')
test_loader = {}
test_dataset = VideoClassificationDataset(test_opts, 'val')
test_loader = DataLoader(test_dataset, batch_size=1, num_workers=6, shuffle=False)
# ===================训练和验证========================
i = 0
file1 = open("/home/video.txt", 'r')
file1_list = file1.readlines()
for data in test_loader:
model_input = data['fc_feats'].to(device)
name_feature = file1_list[i].rstrip().split('\t')[0].split('.')[0]
i = i + 1
out = model(model_input, )
out = out.squeeze(0)
out = out.cpu().detach().numpy()
np.save('/home/video_feature/' + name_feature + '.npy', out)
print(i)
上面两个py文件放在和TimeSformer文件夹同级目录下就好
最终提取的命令为
python extract.py /home/video.txt
这一步的txt文件需要重新生成,格式为视频名加视频提取的帧目录,可以自行生成
最终的视频特征为768维的向量,可以保存为自己想要的数据类型
import os
import sys
import subprocess
import json
import torchvision
import random
import numpy as np
import torch
import torch.nn.functional as F
import cv2
from torch.utils.data import Dataset
from torch.autograd import Variable
from models.transforms import *
from timesformer.models.vit import TimeSformer
device = torch.device("cuda:0")
def get_input(image_path):
prefix = '{:05d}.jpg'
feat_path = image_path
video_data = {}
images = []
mean =[0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
transform_params = {
"side_size": 256,
"crop_size": 224,
"num_segments": 8,
"sampling_rate": 5
}
transform_val = torchvision.transforms.Compose([
GroupScale(int(transform_params["side_size"])),
GroupCenterCrop(transform_params["crop_size"]),
Stack(roll=False),
ToTorchFormatTensor(div=True),
GroupNormalize(mean, std),
])
frame_list = os.listdir(feat_path)
average_duration = len(frame_list) // transform_params["num_segments"]
# offests为采样坐标
offsets = np.array([int(average_duration / 2.0 + average_duration * x) for x in range(transform_params["num_segments"])])
offsets = offsets + 1
for seg_ind in offsets:
p = int(seg_ind)
seg_imgs = Image.open(os.path.join(feat_path, prefix.format(p))).convert('RGB')
images.append(seg_imgs)
video_data = transform_val(images)
video_data = video_data.view((-1, transform_params["num_segments"]) + video_data.size()[1:])
out = Variable(video_data)
return out
def extract(modal, data):
output = {}
out_image_dir = '/home/extract_feature/extract_image'
if modal == 'video':
# =================模型建立======================
model = TimeSformer(img_size=224, num_classes=400, num_frames=8, attention_type='divided_space_time',
pretrained_model='/home/user04/extract_feature/TimeSformer_divST_8x32_224_K400.pyth')
model = model.eval().to(device)
#print(model)
# =================视频抽帧======================
video_name = data.split('/')[-1].split('.')[0]
out_image_path = os.path.join(out_image_dir, video_name)
if not os.path.exists(out_image_path):
os.makedirs(out_image_path)
cmd = 'ffmpeg -i \"{}\" -r 1 -q:v 2 -f image2 \"{}/%05d.jpg\"'.format(data, out_image_path)
subprocess.call(cmd, shell=True,stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
# =================提取特征======================
model_input = get_input(out_image_path).unsqueeze(0).to(device)
print(model_input.shape)
out = model(model_input, )
out = out.squeeze(0)
out = out.cpu().detach().numpy()
return out
video_path = '/home/vi0114457/vi0114457.mp4'
modal = 'video'
out = extract(modal, video_path)