目录
1 人脸检测
2 人脸对齐代码
2.1 FaceProprocess.h
2.2 main.cpp
2.3 makefile
3 对齐效果
人脸识别一般需要经过人脸检测,人脸对齐,特征提取及相似度比对,具体原理可以见:
人脸检测-人脸对齐-人脸识别原理及方法_陈 洪 伟的博客-CSDN博客
该篇文章主要对人脸对齐进行补充,
我们用ldh的图片进行检测,得到人脸框和5个关键点。
检测得到的矩形框和关键点如下:
orgimg.shape: (640, 640, 3)
x1:243.000000,y1:140.000000,x2:447.000000,y2:394.000000
point_0_x:307.000000
point_0_y:252.000000
point_1_x:390.000000
point_1_y:241.000000
point_2_x:359.000000
point_2_y:305.000000
point_3_x:332.000000
point_3_y:340.000000
point_4_x:395.000000
point_4_y:332.000000
结果图如下
//
// Created by Jack Yu on 23/03/2018.
//
#ifndef FACE_DEMO_FACEPREPROCESS_H
#define FACE_DEMO_FACEPREPROCESS_H
#include
#include
using namespace cv;
namespace FacePreprocess {
cv::Mat meanAxis0(const cv::Mat &src)
{
int num = src.rows;
int dim = src.cols;
// x1 y1
// x2 y2
cv::Mat output(1,dim,CV_32F);
for(int i = 0 ; i < dim; i ++)
{
float sum = 0 ;
for(int j = 0 ; j < num ; j++)
{
sum+=src.at(j,i);
}
output.at(0,i) = sum/num;
}
return output;
}
cv::Mat elementwiseMinus(const cv::Mat &A,const cv::Mat &B)
{
cv::Mat output(A.rows,A.cols,A.type());
assert(B.cols == A.cols);
if(B.cols == A.cols)
{
for(int i = 0 ; i < A.rows; i ++)
{
for(int j = 0 ; j < B.cols; j++)
{
output.at(i,j) = A.at(i,j) - B.at(0,j);
}
}
}
return output;
}
cv::Mat varAxis0(const cv::Mat &src)
{
cv:Mat temp_ = elementwiseMinus(src,meanAxis0(src));
cv::multiply(temp_ ,temp_ ,temp_ );
return meanAxis0(temp_);
}
int MatrixRank(cv::Mat M)
{
Mat w, u, vt;
SVD::compute(M, w, u, vt);
Mat1b nonZeroSingularValues = w > 0.0001;
int rank = countNonZero(nonZeroSingularValues);
return rank;
}
// References
// ----------
// .. [1] "Least-squares estimation of transformation parameters between two
// point patterns", Shinji Umeyama, PAMI 1991, DOI: 10.1109/34.88573
//
// """
//
// Anthor:Jack Yu
cv::Mat similarTransform(cv::Mat src,cv::Mat dst) {
int num = src.rows;
int dim = src.cols;
cv::Mat src_mean = meanAxis0(src);
cv::Mat dst_mean = meanAxis0(dst);
cv::Mat src_demean = elementwiseMinus(src, src_mean);
cv::Mat dst_demean = elementwiseMinus(dst, dst_mean);
cv::Mat A = (dst_demean.t() * src_demean) / static_cast(num);
cv::Mat d(dim, 1, CV_32F);
d.setTo(1.0f);
if (cv::determinant(A) < 0) {
d.at(dim - 1, 0) = -1;
}
Mat T = cv::Mat::eye(dim + 1, dim + 1, CV_32F);
cv::Mat U, S, V;
SVD::compute(A, S,U, V);
// the SVD function in opencv differ from scipy .
int rank = MatrixRank(A);
if (rank == 0) {
assert(rank == 0);
} else if (rank == dim - 1) {
if (cv::determinant(U) * cv::determinant(V) > 0) {
T.rowRange(0, dim).colRange(0, dim) = U * V;
} else {
// s = d[dim - 1]
// d[dim - 1] = -1
// T[:dim, :dim] = np.dot(U, np.dot(np.diag(d), V))
// d[dim - 1] = s
int s = d.at(dim - 1, 0) = -1;
d.at(dim - 1, 0) = -1;
T.rowRange(0, dim).colRange(0, dim) = U * V;
cv::Mat diag_ = cv::Mat::diag(d);
cv::Mat twp = diag_*V; //np.dot(np.diag(d), V.T)
Mat B = Mat::zeros(3, 3, CV_8UC1);
Mat C = B.diag(0);
T.rowRange(0, dim).colRange(0, dim) = U* twp;
d.at(dim - 1, 0) = s;
}
}
else{
cv::Mat diag_ = cv::Mat::diag(d);
cv::Mat twp = diag_*V.t(); //np.dot(np.diag(d), V.T)
cv::Mat res = U* twp; // U
T.rowRange(0, dim).colRange(0, dim) = -U.t()* twp;
}
cv::Mat var_ = varAxis0(src_demean);
float val = cv::sum(var_).val[0];
cv::Mat res;
cv::multiply(d,S,res);
float scale = 1.0/val*cv::sum(res).val[0];
T.rowRange(0, dim).colRange(0, dim) = - T.rowRange(0, dim).colRange(0, dim).t();
cv::Mat temp1 = T.rowRange(0, dim).colRange(0, dim); // T[:dim, :dim]
cv::Mat temp2 = src_mean.t(); //src_mean.T
cv::Mat temp3 = temp1*temp2; // np.dot(T[:dim, :dim], src_mean.T)
cv::Mat temp4 = scale*temp3;
T.rowRange(0, dim).colRange(dim, dim+1)= -(temp4 - dst_mean.t()) ;
T.rowRange(0, dim).colRange(0, dim) *= scale;
return T;
}
}
#endif //FACE_DEMO_FACEPREPROCESS_H
#include
#include "FaceProprocess.h"
//标准的关键点。
float v1[5][2] = {
{30.2946f, 51.6963f},
{65.5318f, 51.5014f},
{48.0252f, 71.7366f},
{33.5493f, 92.3655f},
{62.7299f, 92.2041f}};
//检测出的人脸框坐标和关键点
// orgimg.shape: (640, 640, 3)
// x1:243.000000,y1:140.000000,x2:447.000000,y2:394.000000
// point_0_x:307.000000
// point_0_y:252.000000
// point_1_x:390.000000
// point_1_y:241.000000
// point_2_x:359.000000
// point_2_y:305.000000
// point_3_x:332.000000
// point_3_y:340.000000
// point_4_x:395.000000
// point_4_y:332.000000
//#define originWidth 640
//#define wantWidth 112
#define standardWidth 96
#define box_x1 243.00
#define box_y1 140.00
#define box_x2 447.00
#define box_y2 394.00
#define faceWidth (box_x2 - box_x1)
#define faceHeight (box_y2 - box_y1)
float point[10] = {307.00, 252.00, 390.00, 241.00, 359.00, 305.00, 332.00, 340.00, 395.00, 332.00};
// float v2[5][2] ={
// {307.00, 252.00},
// {390.00, 241.00},
// {359.00, 305.00},
// {332.00, 340.00},
// {395.00, 332.00}};
float v2[5][2] ={
{0.00, 0.00},
{0.00, 0.00},
{0.00, 0.00},
{0.00, 0.00},
{0.00, 0.00}};
int main(void)
{
printf("faceWidth:%d\n", faceWidth);
printf("faceHeight:%d\n", faceHeight);
cv::Mat src(5,2,CV_32FC1, v1);
memcpy(src.data, v1, 2 * 5 * sizeof(float));
for (int j = 0; j<5; j = j + 1)
{
v2[j][0] = (point[2*j] - box_x1)*(standardWidth/faceWidth);
v2[j][1] = (point[2*j + 1] - box_y1)*(standardWidth/faceWidth);
printf("v2[%d][0]:%f\n", j, v2[j][0]);
printf("v2[%d][1]:%f\n", j, v2[j][1]);
}
cv::Mat dst(5,2,CV_32FC1, v2);
memcpy(dst.data, v2, 2 * 5 * sizeof(float));
cv::Mat m = FacePreprocess::similarTransform(dst ,src);
cv::Mat map_matrix;
cv::Rect map_matrix_r = Rect(0, 0, 3, 2);
cv::Mat (m, map_matrix_r).copyTo(map_matrix);
cv::Mat croppedImageAligned;
//第四个参数是图像的输出尺寸。
cv::Mat srcImage = imread("./ldh.jpeg");
cv::Mat croppedImage = srcImage(cv::Rect(box_x1, box_y1, faceWidth, faceHeight));// Rect(x,y,width,height)
warpAffine(croppedImage, croppedImageAligned, map_matrix, { (int)faceWidth, (int)faceHeight}, CV_INTER_CUBIC | CV_WARP_FILL_OUTLIERS, BORDER_CONSTANT, cvScalarAll(0));
cv::imwrite("./result.jpg", croppedImageAligned);
return 1;
}
CC = gcc
CPP = g++
AR = ar
RM = rm -f
#Define the resource compiler.
RC = windres
## debug flag
DBG_ENABLE := 1
OS = $(shell uname)
## source file path
SRC_PATH := ./src/
SRC_PATH_EXT :=
DEMO :=./demo/main.cpp
## target file name
TARGET := facealign
DEMO_TARGET := run
## get all source files
SRCS := $(foreach spath, $(SRC_PATH), $(wildcard $(spath)*.c) $(wildcard $(spath)*.cpp))
## all .o based on all .c/.cpp
OBJS = $(SRCS:.c=.o)
OBJS := $(OBJS:.cpp=.o)
## macro define
DEFS := __LINUX__ OS_LINUX _FILE_OFFSET_BITS=64
#if freeimage is static-linked use this !
#DEFS += FREEIMAGE_LIB
#LIBS += -lopencv_calib3d -lopencv_features2d -lopencv_flann -l
#LIBS += -l -lopencv_ml -lopencv_objdetect -lopencv_legacy -lopencv_gpu
#LIBS += -l -lopencv_superres -lopencv_contrib -lopencv_nonfree
#LIBS += -l -l -lopencv_ts -lopencv_stitching -lopencv_core
## need libs, add at here
LIBS := opencv_core opencv_video opencv_highgui opencv_imgproc opencv_photo opencv_videostab opencv_highgui opencv_imgproc opencv_imgcodecs boost_system boost_thread
DEMO_LIBS = $(LIBS)
DEMO_LIBS += facealign
## used headers file path
INCLUDE_PATH := ./include ./src /usr/include/
#$(warning $(INCLUDE_PATH))
## used include librarys file path
LIBRARY_PATH := ./ ./libs /usr/lib/x86_64-linux-gnu/
## debug for debug info, when use gdb to debug
ifeq (1, ${DBG_ENABLE})
CFLAGS += -D_DEBUG -g -DDEBUG=1
else
CFLAGS += -O2 -DNDEBUG
endif
#for ENCYPT flags
ifeq ($(OS), Linux)
LIBS += dl rt
CFLAGS += -fPIC
TARGET_EXT := .so
LIBRARY_PATH +=
LDFLAGS += -Wl,--rpath=./libs
endif
#CFLAGS += -msse4.2 -march=core2 -pipe $(foreach m, $(DEFS), -D$(m))
#CFLAGS += -march=armv8.2-a -pipe $(foreach m, $(DEFS), -D$(m))
CFLAGS += -pipe $(foreach m, $(DEFS), -D$(m))
## get all include path
CFLAGS += $(foreach dir, $(INCLUDE_PATH), -I$(dir))
CXXFLAGS += $(CFLAGS) -std=c++11
## get all library path
LDFLAGS += -lpthread $(foreach lib, $(LIBRARY_PATH), -L$(lib))
DEMO_LDFLAGS := $(LDFLAGS)
## get all librarys
LDFLAGS += $(foreach lib, $(LIBS), -l$(lib))
DEMO_LDFLAGS += $(foreach lib, $(DEMO_LIBS), -l$(lib))
RCFLAGS ?= -DNDEBUG
default: all
%.o: %.c
$(CC) $(CFLAGS) -g -c $< -o $@
%.o: %.cpp
$(CPP) $(CXXFLAGS) -g -c $< -o $@
all: $(OBJS) $(RESOURCE)
#$(CPP) $(CXXFLAGS) -o $(TARGET) $(OBJS) $(RESOURCE) $(LDFLAGS)
$(CPP) $(CXXFLAGS) -g -shared -o lib$(TARGET)$(TARGET_EXT) $(OBJS) $(RESOURCE) $(LDFLAGS)
mv libfacealign.so ./libs
$(CPP) $(CXXFLAGS) -g -o $(DEMO_TARGET) $(DEMO) $(DEMO_LDFLAGS)
clean:
$(RM) $(OBJS) $(DEMO_TARGET) $(TARGET).* $(RESOURCE)
参考文献:
采用mtcnn输出的特征点做人脸对齐C++代码 - 代码先锋网
similarity transform matrix in c++ is different from python · Issue #481 · deepinsight/insightface · GitHub