ACGAN的原理GAN(CGAN)
相似。对于CGAN和ACGAN,生成器输入均为潜在矢量及其标签,输出是属于输入类标签的伪造图像。对于CGAN,判别器的输入是图像(包含假的或真实的图像)及其标签, 输出是图像属于真实图像的概率。对于ACGAN,判别器的输入是一幅图像,而输出是该图像属于真实图像的概率以及其类别概率。
本质上,在CGAN中,向网络提供了标签。在ACGAN中,使用辅助解码器网络重建辅助信息。ACGAN理论认为,强制网络执行其他任务可以提高原始任务的性能。在这种情况下,辅助任务是图像分类。原始任务是生成伪造图像。
判别器目标函数:
L ( D ) = − E x ∼ p d a t a l o g D ( x ) − E z l o g [ 1 − D ( G ( z ∣ y ) ) ] − E x ∼ p d a t a p ( c ∣ x ) − E z l o g p ( c ∣ g ( z ∣ y ) ) \mathcal L^{(D)} = -\mathbb E_{x\sim p_{data}}logD(x)-\mathbb E_zlog[1 − D(G(z|y))]-\mathbb E_{x\sim p_{data}}p(c|x)-\mathbb E_zlogp(c|g(z|y)) L(D)=−Ex∼pdatalogD(x)−Ezlog[1−D(G(z∣y))]−Ex∼pdatap(c∣x)−Ezlogp(c∣g(z∣y))
生成器目标函数:
L ( G ) = − E z l o g D ( g ( z ∣ y ) ) − E z l o g p ( c ∣ g ( z ∣ y ) ) \mathcal L^{(G)} = -\mathbb E_{z}logD(g(z|y))-\mathbb E_zlogp(c|g(z|y)) L(G)=−EzlogD(g(z∣y))−Ezlogp(c∣g(z∣y))
import tensorflow as tf
from tensorflow import keras
import numpy as np
from matplotlib import pyplot as plt
import os
import math
from PIL import Image
def generator(inputs,image_size,activation='sigmoid',labels=None):
"""生成网络
Arguments:
inputs (layer): 输入
image_size (int): 图片尺寸
activation (string): 输出层激活函数
labels (tensor): 标签
returns:
model: 生成网络
"""
image_resize = image_size // 4
kernel_size = 5
layer_filters = [128,64,32,1]
inputs = [inputs,labels]
x = keras.layers.concatenate(inputs,axis=1)
x = keras.layers.Dense(image_resize*image_resize*layer_filters[0])(x)
x = keras.layers.Reshape((image_resize,image_resize,layer_filters[0]))(x)
for filters in layer_filters:
if filters > layer_filters[-2]:
strides = 2
else:
strides = 1
x = keras.layers.BatchNormalization()(x)
x = keras.layers.Activation('relu')(x)
x = keras.layers.Conv2DTranspose(filters=filters,
kernel_size=kernel_size,
strides=strides,
padding='same')(x)
if activation is not None:
x = keras.layers.Activation(activation)(x)
return keras.Model(inputs,x,name='generator')
def discriminator(inputs,activation='sigmoid',num_labels=None):
"""生成网络
Arguments:
inputs (Layer): 输入
activation (string): 输出层激活函数
num_labels (int): 类别数
Returns:
Model: 鉴别网络
"""
kernel_size = 5
layer_filters = [32,64,128,256]
x = inputs
for filters in layer_filters:
if filters == layer_filters[-1]:
strides = 1
else:
strides = 2
x = keras.layers.LeakyReLU(0.2)(x)
x = keras.layers.Conv2D(filters=filters,
kernel_size=kernel_size,
strides=strides,
padding='same')(x)
x = keras.layers.Flatten()(x)
outputs = keras.layers.Dense(1)(x)
if activation is not None:
print(activation)
outputs = keras.layers.Activation(activation)(outputs)
if num_labels:
#ACGAN有第二个输出,用于输出图片的类别
layer = keras.layers.Dense(layer_filters[-2])(x)
labels = keras.layers.Dense(num_labels)(layer)
labels = keras.layers.Activation('softmax',name='label')(labels)
outputs = [outputs,labels]
return keras.Model(inputs,outputs,name='discriminator')
def build_and_train_models():
"""The ACGAN training
"""
#数据加载及预处理
(x_train,y_train),_ = keras.datasets.mnist.load_data()
image_size = x_train.shape[1]
x_train = np.reshape(x_train,[-1,image_size,image_size,1])
x_train = x_train.astype('float32') / 255.
num_labels = len(np.unique(y_train))
y_train = keras.utils.to_categorical(y_train)
#超参数
model_name = 'acgan-mnist'
latent_size = 100
batch_size = 64
train_steps = 40000
lr = 2e-4
decay = 6e-8
input_shape = (image_size,image_size,1)
label_shape = (num_labels,)
#discriminator
inputs = keras.layers.Input(shape=input_shape,name='discriminator_input')
discriminator = discriminator(inputs,num_labels=num_labels)
optimizer = keras.optimizers.RMSprop(lr=lr,decay=decay)
loss = ['binary_crossentropy','categorical_crossentropy']
discriminator.compile(loss=loss,optimizer=optimizer,metrics=['acc'])
discriminator.summary()
#generator
input_shape = (latent_size,)
inputs = keras.layers.Input(shape=input_shape,name='z_input')
labels = keras.layers.Input(shape=label_shape,name='labels')
generator = generator(inputs,image_size,labels=labels)
generator.summary()
optimizer = keras.optimizers.RMSprop(lr=lr*0.5,decay=decay*0.5)
discriminator.trainable = False
adversarial = keras.Model([inputs,labels],discriminator(generator([inputs,labels])),
name=model_name)
adversarial.compile(loss=loss,optimizer=optimizer,metrics=['acc'])
adversarial.summary()
models = (generator,discriminator,adversarial)
data = (x_train,y_train)
params = (batch_size,latent_size,train_steps,num_labels,model_name)
train(models,data,params)
def train(models,data,params):
"""Train the discriminator and adversarial Networks
Arguments:
models (list): generator,discriminator,adversarial
data (list): x_train,y_train
params (list): network parameter
"""
generator,discriminator,adversarial = models
x_train,y_train = data
batch_size,latent_size,train_steps,num_labels,model_name = params
save_interval = 500
noise_input = np.random.uniform(-1.,1.,size=[16,latent_size])
noise_label = np.eye(num_labels)[np.arange(0,16) % num_labels]
train_size = x_train.shape[0]
print(model_name,'Labels for generated images: ',np.argmax(noise_label,axis=1))
for i in range(train_steps):
#训练鉴别器
rand_indexes = np.random.randint(0,train_size,size=batch_size)
real_images = x_train[rand_indexes]
real_labels = y_train[rand_indexes]
#产生伪造图片
noise = np.random.uniform(-1.,1.,size=(batch_size,latent_size))
fake_labels = np.eye(num_labels)[np.random.choice(num_labels,batch_size)]
fake_images = generator.predict([noise,fake_labels])
#构造输入
x = np.concatenate((real_images,fake_images))
#训练类别标签
labels = np.concatenate((real_labels,fake_labels))
#标签
y = np.ones([2*batch_size,1])
y[batch_size:,:] = 0.0
#训练模型
metrics = discriminator.train_on_batch(x,[y,labels])
fmt = '%d: [disc loss: %f, srcloss: %f],'
fmt += 'lbloss: %f, srcacc: %f, lblacc: %f'
log = fmt % (i,metrics[0],metrics[1],metrics[2],metrics[3],metrics[4])
#train adversarial network for 1 batch
noise = np.random.uniform(-1.,1.,size=(batch_size,latent_size))
fake_labels = np.eye(num_labels)[np.random.choice(num_labels,batch_size)]
y = np.ones([batch_size,1])
metrics = adversarial.train_on_batch([noise,fake_labels],[y,fake_labels])
fmt = "%s [advr loss: %f, srcloss: %f,"
fmt += "lblloss: %f, srcacc: %f, lblacc: %f]"
log = fmt % (log, metrics[0], metrics[1], metrics[2], metrics[3], metrics[4])
print(log)
if (i + 1) % save_interval == 0:
# 绘制生成图片
plot_images(generator,noise_input=noise_input,
noise_label=noise_label,show=False,
step=(i + 1),
model_name=model_name)
generator.save(model_name + ".h5")
def plot_images(generator,
noise_input,
noise_label=None,
noise_codes=None,
show=False,
step=0,
model_name="gan"):
"""生成虚假图片及绘制
# Arguments
generator (Model): 生成模型
noise_input (ndarray): 潜在模型
show (bool): 是否展示
step (int): step值
model_name (string): 模型名称
"""
os.makedirs(model_name, exist_ok=True)
filename = os.path.join(model_name, "%05d.png" % step)
rows = int(math.sqrt(noise_input.shape[0]))
if noise_label is not None:
noise_input = [noise_input, noise_label]
if noise_codes is not None:
noise_input += noise_codes
images = generator.predict(noise_input)
plt.figure(figsize=(2.2, 2.2))
num_images = images.shape[0]
image_size = images.shape[1]
for i in range(num_images):
plt.subplot(rows, rows, i + 1)
image = np.reshape(images[i], [image_size, image_size])
plt.imshow(image, cmap='gray')
plt.axis('off')
plt.savefig(filename)
if show:
plt.show()
else:
plt.close('all')
#运行
if __name__ == '__main__':
build_and_train_models()
step=1000:
step=15000: