SVD奇异值分解(理论与C++实现)

SVD奇异值分解

  • 前言
  • 理论推导
  • 部分代码实现

前言

  奇异值分解(singular value decomposition,以下简称SVD)是线性代数中一种重要的矩阵分解。SVD将矩阵分解为奇异向量(singular vector)和奇异值(singular value)。SVD将矩阵 A A A分解成三个矩阵的乘积
A = U D V T A = UDV^{T} A=UDVT
  设 A A A m × n m\times n m×n的矩阵,则 U U U是一个 m × m m\times m m×m的矩阵, D D D是一个 m × n m\times n m×n的矩阵 V V V是一个 n × n n\times n n×n的矩阵。
  读者可访问以下链接获取相关代码
  代码链接

理论推导

部分代码实现

/**
 * @brief 实现奇异值分解
 * @note  基于Householder变换以及变星QR算法对一般实矩阵A进行奇异值分解
 * step1 用豪斯荷尔德变换将A约化为双对角线矩阵
 * step2 用变星的QR算法进行迭代,计算所有奇异值
 * steo3 对奇异值按非递增次序进行排列
*/
void Matrix::SVD( const Matrix & A, Matrix& U2, Matrix& W, Matrix& V) {
    Matrix U = A;
    int m = A.rows();
    int n = A.cols();
    U2 = Matrix(m, m);
    V = Matrix(n, n);

    NAFLOAT* w = (NAFLOAT*)malloc(n * sizeof(NAFLOAT));
    NAFLOAT* rv1 = (NAFLOAT*)malloc(n * sizeof(NAFLOAT));

    int32_t flag, i, its, j, jj, k, l, nm;
    NAFLOAT   anorm, c, f, g, h, s, scale, x, y, z;

    g = scale = anorm = 0.0;
    for (i = 0; i < n; i++) {
        l = i + 1;
        rv1[i] = scale * g;
        g = s = scale = 0.0;
        if (i < m) {
            for (k = i; k < m; k++) scale += fabs(U.m_val[k][i]);
            if (scale) {
                for (k = i; k < m; k++) {
                    U.m_val[k][i] /= scale;
                    s += U.m_val[k][i] * U.m_val[k][i];
                }
                f = U.m_val[i][i];
                g = -SIGN(sqrt(s), f);
                h = f * g - s;
                U.m_val[i][i] = f - g;
                for (j = l; j < n; j++) {
                    for (s = 0.0, k = i; k < m; k++) s += U.m_val[k][i] * U.m_val[k][j];
                    f = s / h;
                    for (k = i; k < m; k++) U.m_val[k][j] += f * U.m_val[k][i];
                }
                for (k = i; k < m; k++) U.m_val[k][i] *= scale;
            }
        }
        w[i] = scale * g;
        g = s = scale = 0.0;
        if (i < m && i != n - 1) {
            for (k = l; k < n; k++) scale += fabs(U.m_val[i][k]);
            if (scale) {
                for (k = l; k < n; k++) {
                    U.m_val[i][k] /= scale;
                    s += U.m_val[i][k] * U.m_val[i][k];
                }
                f = U.m_val[i][l];
                g = -SIGN(sqrt(s), f);
                h = f * g - s;
                U.m_val[i][l] = f - g;
                for (k = l; k < n; k++) rv1[k] = U.m_val[i][k] / h;
                for (j = l; j < m; j++) {
                    for (s = 0.0, k = l; k < n; k++) s += U.m_val[j][k] * U.m_val[i][k];
                    for (k = l; k < n; k++) U.m_val[j][k] += s * rv1[k];
                }
                for (k = l; k < n; k++) U.m_val[i][k] *= scale;
            }
        }
        anorm = std::max(anorm, (std::fabs(w[i]) + std::fabs(rv1[i])));
    }
    for (i = n - 1; i >= 0; i--) { // Accumulation of right-hand transformations.
        if (i < n - 1) {
            if (g) {
                for (j = l; j < n; j++) // Double division to avoid possible underflow.
                    V.m_val[j][i] = (U.m_val[i][j] / U.m_val[i][l]) / g;
                for (j = l; j < n; j++) {
                    for (s = 0.0, k = l; k < n; k++) s += U.m_val[i][k] * V.m_val[k][j];
                    for (k = l; k < n; k++) V.m_val[k][j] += s * V.m_val[k][i];
                }
            }
            for (j = l; j < n; j++) V.m_val[i][j] = V.m_val[j][i] = 0.0;
        }
        V.m_val[i][i] = 1.0;
        g = rv1[i];
        l = i;
    }
    for (i = std::min(m, n) - 1; i >= 0; --i) { // Accumulation of left-hand transformations.
        l = i + 1;
        g = w[i];
        for (j = l; j < n; j++) U.m_val[i][j] = 0.0;
        if (g) {
            g = 1.0 / g;
            for (j = l; j < n; j++) {
                for (s = 0.0, k = l; k < m; k++) s += U.m_val[k][i] * U.m_val[k][j];
                f = (s / U.m_val[i][i]) * g;
                for (k = i; k < m; k++) U.m_val[k][j] += f * U.m_val[k][i];
            }
            for (j = i; j < m; j++) U.m_val[j][i] *= g;
        }
        else for (j = i; j < m; j++) U.m_val[j][i] = 0.0;
        ++U.m_val[i][i];
    }
    for (k = n - 1; k >= 0; k--) { // Diagonalization of the bidiagonal form: Loop over singular values,
        for (its = 0; its < 30; its++) { // and over allowed iterations.
            flag = 1;
            for (l = k; l >= 0; l--) { // Test for splitting.
                nm = l - 1;
                if ((NAFLOAT)(fabs(rv1[l]) + anorm) == anorm) { flag = 0; break; }
                if ((NAFLOAT)(fabs(w[nm]) + anorm) == anorm) { break; }
            }
            if (flag) {
                c = 0.0; // Cancellation of rv1[l], if l > 1.
                s = 1.0;
                for (i = l; i <= k; i++) {
                    f = s * rv1[i];
                    rv1[i] = c * rv1[i];
                    if ((NAFLOAT)(fabs(f) + anorm) == anorm) break;
                    g = w[i];
                    h = pythag(f, g);
                    w[i] = h;
                    h = 1.0 / h;
                    c = g * h;
                    s = -f * h;
                    for (j = 0; j < m; j++) {
                        y = U.m_val[j][nm];
                        z = U.m_val[j][i];
                        U.m_val[j][nm] = y * c + z * s;
                        U.m_val[j][i] = z * c - y * s;
                    }
                }
            }
            z = w[k];
            if (l == k) { // Convergence.
                if (z < 0.0) { // Singular value is made nonnegative.
                    w[k] = -z;
                    for (j = 0; j < n; j++) V.m_val[j][k] = -V.m_val[j][k];
                }
                break;
            }

            NA_Assert(its != 29,"ERROR in SVD: No convergence in 30 iterations");
            x = w[l]; // Shift from bottom 2-by-2 minor.
            nm = k - 1;
            y = w[nm];
            g = rv1[nm];
            h = rv1[k];
            f = ((y - z) * (y + z) + (g - h) * (g + h)) / (2.0 * h * y);
            g = pythag(f, 1.0);
            f = ((x - z) * (x + z) + h * ((y / (f + SIGN(g, f))) - h)) / x;
            c = s = 1.0; // Next QR transformation:
            for (j = l; j <= nm; j++) {
                i = j + 1;
                g = rv1[i];
                y = w[i];
                h = s * g;
                g = c * g;
                z = pythag(f, h);
                rv1[j] = z;
                c = f / z;
                s = h / z;
                f = x * c + g * s;
                g = g * c - x * s;
                h = y * s;
                y *= c;
                for (jj = 0; jj < n; jj++) {
                    x = V.m_val[jj][j];
                    z = V.m_val[jj][i];
                    V.m_val[jj][j] = x * c + z * s;
                    V.m_val[jj][i] = z * c - x * s;
                }
                z = pythag(f, h);
                w[j] = z; // Rotation can be arbitrary if z = 0.
                if (z) {
                    z = 1.0 / z;
                    c = f * z;
                    s = h * z;
                }
                f = c * g + s * y;
                x = c * y - s * g;
                for (jj = 0; jj < m; jj++) {
                    y = U.m_val[jj][j];
                    z = U.m_val[jj][i];
                    U.m_val[jj][j] = y * c + z * s;
                    U.m_val[jj][i] = z * c - y * s;
                }
            }
            rv1[l] = 0.0;
            rv1[k] = f;
            w[k] = x;
        }
    }

    // sort singular values and corresponding columns of u and v
    // by decreasing magnitude. Also, signs of corresponding columns are
    // flipped so as to maximize the number of positive elements.
    int32_t s2, inc = 1;
    NAFLOAT   sw;
    NAFLOAT* su = (NAFLOAT*)malloc(m * sizeof(NAFLOAT));
    NAFLOAT* sv = (NAFLOAT*)malloc(n * sizeof(NAFLOAT));
    do { inc *= 3; inc++; } while (inc <= n);
    do {
        inc /= 3;
        for (i = inc; i < n; i++) {
            sw = w[i];
            for (k = 0; k < m; k++) su[k] = U.m_val[k][i];
            for (k = 0; k < n; k++) sv[k] = V.m_val[k][i];
            j = i;
            while (w[j - inc] < sw) {
                w[j] = w[j - inc];
                for (k = 0; k < m; k++) U.m_val[k][j] = U.m_val[k][j - inc];
                for (k = 0; k < n; k++) V.m_val[k][j] = V.m_val[k][j - inc];
                j -= inc;
                if (j < inc) break;
            }
            w[j] = sw;
            for (k = 0; k < m; k++) U.m_val[k][j] = su[k];
            for (k = 0; k < n; k++) V.m_val[k][j] = sv[k];
        }
    } while (inc > 1);
    for (k = 0; k < n; k++) { // flip signs
        s2 = 0;
        for (i = 0; i < m; i++) if (U.m_val[i][k] < 0.0) s2++;
        for (j = 0; j < n; j++) if (V.m_val[j][k] < 0.0) s2++;
        if (s2 > (m + n) / 2) {
            for (i = 0; i < m; i++) U.m_val[i][k] = -U.m_val[i][k];
            for (j = 0; j < n; j++) V.m_val[j][k] = -V.m_val[j][k];
        }
    }

    // create vector and copy singular values
    W = Matrix(std::min(m, n), 1, w);

    // extract mxm submatrix U
    U2.setMat(U.getMat(0, 0, m - 1, std::min(m - 1, n - 1)), 0, 0);

    // release temporary memory
    free(w);
    free(rv1);
    free(su);
    free(sv);
}

你可能感兴趣的:(矩阵论,SVD,奇异值分解,C++)