- Learning Fully Convolutional Networks for Iterative Non-blind Deconvolution论文阅读
青铜锁00
#退化论文阅读深度学习论文阅读图像处理
LearningFullyConvolutionalNetworksforIterativeNon-blindDeconvolution1.研究目标与实际问题1.1研究目标1.2实际意义2.创新方法与模型设计2.1核心框架:迭代式梯度域处理2.1.1模型架构2.2关键技术实现2.2.1梯度域去噪网络2.2.2解卷积模块(核心公式实现)2.2.3损失函数设计2.2.4超参数端到端学习2.3与传统方法
- 达梦dsc与mpp集群机制比较
wyllove97
数据库dba
达梦数据库现有2套分布式产品,即DMdsc共享存储集群以及DMmpp非共享存储集群DMdsc共享存储集群:该产品功能类似于oraclerac,具有高可用性和高伸缩性的特征,可提供横向扩展,实现超单一服务器的功能。其提升了错误恢复能力,并且随着系统增长而逐步扩展。一旦系统发生失败,该集群对用户保证最高可用性,保障关键业务数据不被丢失。拓扑图如下图所示:在配置DMdsc时,需配置两套网络,一套用于提供
- 让AI自己学会“怎么学”——元学习,才是高效训练的终极武器!
Echo_Wish
Python进阶人工智能学习
让AI自己学会“怎么学”——元学习,才是高效训练的终极武器!朋友们,今天咱不聊ChatGPT,不聊大模型黑魔法,也不玩Prompt咒语。我想聊一个比“怎么训模型”更底层、更值得思考的问题:如果我们能让模型自己学会怎么更快、更聪明地学习,是不是就能少走很多弯路?这,就是元学习(MetaLearning)要解决的事儿。说白了,元学习是AI给AI上培训课的过程。咱们天天琢磨怎么喂模型数据、调超参、搞迁移
- 突发!微信链接被拦截?微信内打不开,已停止访问该怎么办?提示复制去浏览器打开?
小北网络知识分享
链接问题微信计算机网络开发语言网络安全
精心制作的营销链接刚分享到微信群,瞬间弹出「已停止访问该网页」的提示?数据显示,2025年上半年微信拦截违规链接超2亿条,其中60%的运营者因不了解规则导致解封失败。别慌!本文结合最新政策与实战案例,手把手教你快速定位问题、72小时高效解封,并建立长效防封机制。一、拦截真相:微信系统紧盯的5大「高危行为」微信的智能拦截系统基于内容安全、技术合规、用户反馈三大维度,以下行为极易触发「红色警报」:1.
- C# WPF + Helix Toolkit 实战:用两种方式打造“六面异色立方体”
凌霜残雪
WPF+3D数字孪生实战wpf3d材质数字孪生
引言在3D图形开发中,给立方体的每个面设置不同颜色是一个非常经典且实用的小项目。它不仅帮助我们理解3D网格构造、材质绑定和光照渲染的基本原理,还为我们后续学习更复杂的模型操作打下基础。在这篇博客中,我们将使用HelixToolkit(WPFSharpDX版本),通过两种方法来实现一个“六面异色立方体”,并详细分析它们的优缺点与适用场景。效果演示方法一:自动解析网格——CreateColoredBo
- 国产AI工具终于对“屎山代码”下手了
飞算JavaAI开发助手
AIJavaAI编程工具mavenintellij-ideaspring
每个程序员入职时,HR总会用温柔的语气画饼:“我们代码base超规范!”直到某天,你点开前任大神留下的项目,眼前密密麻麻的代码如同盘根错节的“八爪鱼”,才惊觉自己掉进了“屎山代码”的深渊。这些代码毫无结构可言,函数动辄上千行,变量名全是abc123,注释只有一句“这里很重要”。你试图理清逻辑,却像在玩一场没有尽头的解谜游戏,越深入越绝望。每修改一处代码,就像在撬动屎山上的一块石头,随时可能引发“山
- Pytest自动化测试框架pytest-xdist分布式测试插件(超详细)
一个小小的测试人
pytest分布式职场和发展功能测试软件测试自动化测试
平常我们功能测试用例非常多时,比如有1千条用例,假设每个用例执行需要1分钟,如果单个测试人员执行需要1000分钟才能跑完;当项目非常紧急时,会需要协调多个测试资源来把任务分成两部分,于是执行时间缩短一半,如果有10个小伙伴,那么执行时间就会变成十分之一,大大节省了测试时间;为了节省项目测试时间,10个测试同时并行测试,这就是一种分布式场景;同样道理,当我们自动化测试用例非常多的时候,一条条按顺序执
- 2-感知机学习算法
罗东琦
统计学习笔记
感知机模型感知机学习策略学习算法算法收敛性对偶形式与线性SVM的异同感知机(perceptron)是一个线性二分类模型,其目的是寻找一个超平面将正负示例划分开,属于判别模型,也是神经网络与SVM的基础。感知机模型假设输入空间为χ⊆Rnχ⊆Rn,输出空间为Υ⊆{+1,−1}Υ⊆{+1,−1}。输入x∈χx∈χ表示实例的特征向量,输出y∈Υy∈Υ表示实例的类别。则下面的函数f(x)=sign(w⋅x+
- 感知机学习
Collin_NLP
机器学习Python
基本概念:感知机是二类分类的线性分类模型,对应于特征空间中将实例划分为正负两类的分离超平面,属判别模型。感知机学习旨在求出将训练数据进行线性划分的分离超平面。感知机的定义:从输入空间Rn到输出空间{+1,-1}的函数映射:f(x)=sign(w*x+b)模型参数:w----权值向量b----偏置wx+b=0-----分离超平面方程数据集{(xi,yi)}with1给定训练集,正例x1=(3,3)x
- 机器学习,支持向量机svm和决策树xgboost介绍
suixinm
支持向量机机器学习决策树
支持向量机(SVM)和XGBoost都是非常强大且应用广泛的机器学习算法,但它们基于不同的原理,各有其优势和劣势,适用于不同的场景。以下是两者的主要区别和优劣势对比:1.核心思想与模型类型:SVM:核心思想:找到一个最优的超平面(在特征空间中),将不同类别的样本分隔开,并且使得该超平面到两类样本中最近的样本点(支持向量)的距离(间隔)最大化。核心是几何间隔最大化。模型类型:单个模型(虽然是核方法,
- 新手向:从零开始MySQL超详细安装、配置与使用指南
nightunderblackcat
基础环境配置mysql数据库
什么是MySQL?一句话解释:MySQL是全球最流行的开源关系型数据库,像淘宝、Facebook等大型网站都在使用它存储数据!它采用表格形式管理数据(类似Excel),支持SQL语言进行数据操作。第一步:安装MySQL(多系统详解)Windows系统下载安装包:访问官网:https://dev.mysql.com/downloads/mysql/选择MySQLInstallerMSI(Window
- 极海G32R501双向数字电源解决方案 赋能AI服务器及电源应用创新
Geehy极海半导体
产品方案人工智能微型逆变器AI服务器电源光储充
6月26日,Big-Bit商务网主办的2025中国电子热点解决方案创新峰会在东莞召开,峰会以“核心智变、能效跃迁”为主题,聚焦光储充、800V超充、AI服务器、BMS、智能汽车照明与汽车中小电机电控应用。峰会期间,珠海极海半导体有限公司(以下简称“极海”)携芯片级解决方案亮相现场展区,包含:48V/50A双向电源、800W一拖二微型逆变器、低压无感双电机、交流充电桩、UPS电源、6.6kW双向OB
- 家装设计师必存:2025年5大爆火环保建材避坑指南
渲吧-云渲染
3d
选材如战场,既要环保潮流,又要规避陷阱。今天深度剖析5种高热度环保建材,从性能短板到施工要点,助你专业提案,底气十足。一、竹材:速生之美,细节定成败优势:3年速生,抗弯强度超松木40%,耐用环保。碳化竹材打造水墨纹理背景墙,成本比实木省30%。避坑:南方潮湿环境必须选择“高温碳化+环保清漆”处理板材,甲醛释放量需5℃(避免成膜不均)。创意应用:衣柜内贴生物基防潮膜(香樟木粉改性款天然防虫),儿童房
- 派拉软件重磅推出AI网关,破解大模型时代企业AI流量管理难题!
派拉软件
人工智能身份与访问控制安全安全apiAI网关
从ChatGPT到DeepSeek、Sora......AI技术正以惊人的速度渗透到企业和员工的各个办公与业务场景。然而,随着AI模型调用量的激增,企业逐渐面临多模型管理混乱、数据安全风险、成本失控等问题。如何高效、安全地驾驭AI流量?答案正在AI网关。一、AI网关是什么?为何而生?早在2023年,Gartner就预测在2026年,超80%的企业将使用生成式AI(GenAI)应用程序编程接口(AP
- 【机器学习】机器学习的基本分类-监督学习-线性回归(Linear Regression)
IT古董
人工智能机器学习机器学习分类学习人工智能线性回归
线性回归是监督学习中的一种基础算法,用于解决回归问题。它通过拟合一条直线(或平面、高维超平面),来预测输出与输入变量之间的关系。1.线性回归的基本概念目标给定输入和对应的输出y,找到一个线性函数:其中:是权重(回归系数)。b是偏置(截距)。y是预测值。损失函数为了找到最佳的w和b,需要最小化预测值和真实值
- 创客匠人解析:身心灵赛道创始人 IP 打造核心策略
创小匠
tcp/ip网络协议网络
在当代社会焦虑情绪蔓延的背景下,身心灵赛道正以万亿级市场规模成为知识变现的新蓝海。作为知识变现领域的重要参与者,创客匠人通过服务超5W+知识博主的实践经验,揭示了该赛道中创始人IP打造的底层逻辑——IP不仅是形象符号,更是连接用户情绪价值与商业价值的核心纽带。一、IP形象的「能量化」构建:从外在到内在的信任锚点身心灵赛道的IP形象绝非单纯的视觉包装,而是「平和感」与「专业度」的融合体。创客匠人在服
- 分布式电源采集控制装置:山东光伏电站的“智能中枢”
微机综合保护
分布式
在山东省构建新型电力系统的战略布局中,分布式光伏装机规模已突破30GW,占比超全国总量的15%。面对大规模光伏并网带来的调峰压力与电压波动挑战,分布式电源采集控制装置作为核心调控装备,通过实时监测、智能决策与多端协同,成为保障电网安全、提升新能源消纳的关键技术载体。一、核心功能:构建多维数据闭环全量数据采集与边缘计算装置通过高精度传感器实时采集光伏阵列的发电功率、逆变器效率、环境辐照度等参数。内置
- 曼昆《经济学原理》第九版 宏观经济学 第二十六章货币增长与通货膨胀
没有女朋友的程序员
经济学
以下是曼昆《经济学原理》第九版宏观经济学第二十六章**“货币增长与通货膨胀”**的详细讲解,从零基础开始构建知识框架,结合中国实际案例与生活化比喻,帮助小白系统理解核心概念:一、知识框架:通货膨胀的“因果链”1.核心问题:为什么发钱会引发物价上涨?2.关键概念:货币数量论、古典二分法、费雪效应、通货膨胀税3.逻辑链条:货币超发→物价上涨→购买力下降→社会成本4.中国实践:M2增长与通胀压力、房地产
- MCP模型上下文协议:AI人工智能模型训练的自动化调参
AI天才研究院
AI人工智能与大数据人工智能自动化运维ai
MCP模型上下文协议:AI人工智能模型训练的自动化调参关键词:MCP模型、自动化调参、AI训练、超参数优化、上下文协议、机器学习、深度学习摘要:本文深入探讨MCP模型上下文协议在AI模型训练自动化调参中的应用。MCP(ModelContextProtocol)是一种创新的自动化调参框架,通过上下文感知和动态参数调整机制,显著提升模型训练效率和性能。文章将从理论基础、算法实现、数学原理到实际应用进行
- C++ sfml使用教程
Tan_Zhixia
c++
配置过程参考下面的文章:超详细!SFML库vs2022配置教程-CSDN博客教程sfml是一个图形库,它提供了窗口,绘图等图形化功能。先来看一个简单的例子(官方demo)例子#includeintmain(){sf::RenderWindowwindow(sf::VideoMode(200,200),"SFMLworks!");sf::CircleShapeshape(100.f);shape.s
- 【2025最新】AI大模型项目实战教程大揭秘!超详细攻略,手把手带你飞,记得收藏!
大模型教程
人工智能产品经理大模型大模型教程大数据大模型学习程序员
一、大模型开发整理流程1.1、什么是大模型开发我们将开发以大语言模型为功能核心、通过大语言模型的强大理解能力和生成能力、结合特殊的数据或业务逻辑来提供独特功能的应用称为大模型开发。开发大模型相关应用,其技术核心点虽然在大语言模型上,但一般通过调用API或开源模型来实现核心的理解与生成,通过PromptEnginnering来实现大语言模型的控制,因此,虽然大模型是深度学习领域的集大成之作,大模型开
- 邮科千兆2光8电工业级交换机在高温环境中的可靠性实践
邮科工业交换机定制
网络安全
工业物联网场景里,网络设备稳定性关乎生产系统连续性,冶金、能源、交通等高温作业环境,工业交换机需经受75℃以上高温考验。本文以邮科千兆2光8电工业交换机为例,结合测试数据与应用案例,解析其高温环境下技术适配性与可靠性保障机制。一、高温对工业交换机的技术挑战工业现场高温对交换机影响多维。钢铁企业冷轧车间实测,环境温度超60℃,普通商用交换机散热不足,芯片温度飙升至95℃,数据包丢失率从0.03%增至
- 邮科ODM摄像头高温生存法则
在钢铁冶炼等高温工业场景,监控设备面临光学性能衰减、电子元件失效、材料形变等多重挑战。经过实测,环境温度超60℃,普通摄像头图像噪点激增300%、焦点偏移。本文以邮科ODM摄像头为例,揭示其突破环境限制的逻辑。一、高温对监控设备的复合挑战工业高温环境对监控设备影响呈链式反应。测试中,75℃时摄像头图像传感器暗电流噪声增4倍,夜视画面出现大量绿色噪点,镜头组材料热膨胀系数差异致光学失焦,关键设备读数
- UIKit详解
ldl_csdn_ios
iOSuikit
NSObjectUIAcceleration------三维加速数据(游戏开发)UIAccelerometer------加速计(游戏开发)UIAccessibilityElement------封装的项目信息对一些特殊的人可见,默认情况下是不可访问的。UIBarItem------一个抽象的超类用来在屏幕的底部给项目加上一栏。UIBarButtonItem------一个栏按钮项目是放置在一个U
- “据《企业数字化转型白皮书》2024”),“行业调研显示”。 :文控版本混乱每年吞掉多少利润?
Ru_fang
笔记大数据网络
一、当文档成为“变形金刚”:版本混乱正在拖垮多少企业?在某科技公司的项目群里,一份名为“产品需求v3.0”的文档突然引发争议:开发部按“v3.0”推进功能,市场部却拿着“v2.5修订版”规划推广,而法务部存档的竟是“v2.0最终版”。一场因版本混乱引发的协作事故,让项目延期3周,直接损失超20万元——这并非个例。据调研数据显示,83%的企业曾因文控版本混乱导致:决策失误:依赖过时数据导致战略偏差;
- 物联网嵌入式硬件开发管理指南(超详细版):基于三种外包方式的三阶段策略
Hy行者勇哥
绿色智造·产品设计与管理物联网嵌入式硬件struts
目录摘要1.引言2.物联网嵌入式硬件开发概述3.软硬件工作边界与技术细节3.1硬件工作内容与技术细节需求分析:原理图设计:PCB设计:样机制造:硬件测试:量产支持:3.2软件工作内容与技术细节固件开发:通信协议:应用逻辑:软件测试:软硬件集成:3.3软硬件交互与物联网特性4.三阶段外包策略规划(三种方式)4.1阶段一:技术顾问外包4.2阶段二:部分开发外包4.3阶段三:独立开发外包5.非专业管理者
- Nacos适配GaussDB超详细部署流程,通过二进制包、以及 Docker 打通用镜像包部署保姆级教程
Mr.L-OAM
linux系统运维gaussdbdocker经验分享
1部署openGauss官方文档下载https://support.huaweicloud.com/download_gaussdb/index.html社区地址安装包下载本文主要是以部署轻量级为主要教程,系统为openEuler,ip:192.168.1.151.1系统环境准备操作系统选择系统AARCH64X86-64openEuler√√CentOS7×√Docker√√1.2软硬件安装环境版
- Java Class常量池和运行时常量池的区别?
java1234_小锋
javajava开发语言jvm
大家好,我是锋哥。今天分享关于【JavaClass常量池和运行时常量池的区别?】面试题。希望对大家有帮助;JavaClass常量池和运行时常量池的区别?超硬核AI学习资料,现在永久免费了!在Java中,常量池分为类常量池和运行时常量池,它们分别用于存储不同类型的常量。下面是它们之间的主要区别:1.类常量池(ClassConstantPool):定义:类常量池是指类加载时在.class文件中定义的常
- Kafka中的消费者偏移量是如何管理的?
java1234_小锋
javakafka分布式
大家好,我是锋哥。今天分享关于【Kafka中的消费者偏移量是如何管理的?】面试题。希望对大家有帮助;Kafka中的消费者偏移量是如何管理的?超硬核AI学习资料,现在永久免费了!在Kafka中,消费者的偏移量(offset)是用来追踪消费者读取消息的位置。Kafka提供了多种方式来管理消费者偏移量,确保消息能够从正确的位置继续消费。以下是Kafka中消费者偏移量的管理方式:1.自动提交(AutoCo
- Kafka的消费消息是如何传递的?
java1234_小锋
javakafka分布式
大家好,我是锋哥。今天分享关于【Kafka的消费消息是如何传递的?】面试题。希望对大家有帮助;Kafka的消费消息是如何传递的?超硬核AI学习资料,现在永久免费了!在Kafka中,消息的消费是通过消费者(Consumer)和消费者组(ConsumerGroup)来完成的。Kafka通过这种机制来传递消息并确保消息被正确消费。下面是Kafka消费消息传递的基本流程:消息生产(Producer):Ka
- Java实现的基于模板的网页结构化信息精准抽取组件:HtmlExtractor
yangshangchuan
信息抽取HtmlExtractor精准抽取信息采集
HtmlExtractor是一个Java实现的基于模板的网页结构化信息精准抽取组件,本身并不包含爬虫功能,但可被爬虫或其他程序调用以便更精准地对网页结构化信息进行抽取。
HtmlExtractor是为大规模分布式环境设计的,采用主从架构,主节点负责维护抽取规则,从节点向主节点请求抽取规则,当抽取规则发生变化,主节点主动通知从节点,从而能实现抽取规则变化之后的实时动态生效。
如
- java编程思想 -- 多态
百合不是茶
java多态详解
一: 向上转型和向下转型
面向对象中的转型只会发生在有继承关系的子类和父类中(接口的实现也包括在这里)。父类:人 子类:男人向上转型: Person p = new Man() ; //向上转型不需要强制类型转化向下转型: Man man =
- [自动数据处理]稳扎稳打,逐步形成自有ADP系统体系
comsci
dp
对于国内的IT行业来讲,虽然我们已经有了"两弹一星",在局部领域形成了自己独有的技术特征,并初步摆脱了国外的控制...但是前面的路还很长....
首先是我们的自动数据处理系统还无法处理很多高级工程...中等规模的拓扑分析系统也没有完成,更加复杂的
- storm 自定义 日志文件
商人shang
stormclusterlogback
Storm中的日志级级别默认为INFO,并且,日志文件是根据worker号来进行区分的,这样,同一个log文件中的信息不一定是一个业务的,这样就会有以下两个需求出现:
1. 想要进行一些调试信息的输出
2. 调试信息或者业务日志信息想要输出到一些固定的文件中
不要怕,不要烦恼,其实Storm已经提供了这样的支持,可以通过自定义logback 下的 cluster.xml 来输
- Extjs3 SpringMVC使用 @RequestBody 标签问题记录
21jhf
springMVC使用 @RequestBody(required = false) UserVO userInfo
传递json对象数据,往往会出现http 415,400,500等错误,总结一下需要使用ajax提交json数据才行,ajax提交使用proxy,参数为jsonData,不能为params;另外,需要设置Content-type属性为json,代码如下:
(由于使用了父类aaa
- 一些排错方法
文强chu
方法
1、java.lang.IllegalStateException: Class invariant violation
at org.apache.log4j.LogManager.getLoggerRepository(LogManager.java:199)at org.apache.log4j.LogManager.getLogger(LogManager.java:228)
at o
- Swing中文件恢复我觉得很难
小桔子
swing
我那个草了!老大怎么回事,怎么做项目评估的?只会说相信你可以做的,试一下,有的是时间!
用java开发一个图文处理工具,类似word,任意位置插入、拖动、删除图片以及文本等。文本框、流程图等,数据保存数据库,其余可保存pdf格式。ok,姐姐千辛万苦,
- php 文件操作
aichenglong
PHP读取文件写入文件
1 写入文件
@$fp=fopen("$DOCUMENT_ROOT/order.txt", "ab");
if(!$fp){
echo "open file error" ;
exit;
}
$outputstring="date:"." \t tire:".$tire."
- MySQL的btree索引和hash索引的区别
AILIKES
数据结构mysql算法
Hash 索引结构的特殊性,其 检索效率非常高,索引的检索可以一次定位,不像B-Tree 索引需要从根节点到枝节点,最后才能访问到页节点这样多次的IO访问,所以 Hash 索引的查询效率要远高于 B-Tree 索引。
可能很多人又有疑问了,既然 Hash 索引的效率要比 B-Tree 高很多,为什么大家不都用 Hash 索引而还要使用 B-Tree 索引呢
- JAVA的抽象--- 接口 --实现
百合不是茶
抽象 接口 实现接口
//抽象 类 ,方法
//定义一个公共抽象的类 ,并在类中定义一个抽象的方法体
抽象的定义使用abstract
abstract class A 定义一个抽象类 例如:
//定义一个基类
public abstract class A{
//抽象类不能用来实例化,只能用来继承
//
- JS变量作用域实例
bijian1013
作用域
<script>
var scope='hello';
function a(){
console.log(scope); //undefined
var scope='world';
console.log(scope); //world
console.log(b);
- TDD实践(二)
bijian1013
javaTDD
实践题目:分解质因数
Step1:
单元测试:
package com.bijian.study.factor.test;
import java.util.Arrays;
import junit.framework.Assert;
import org.junit.Before;
import org.junit.Test;
import com.bijian.
- [MongoDB学习笔记一]MongoDB主从复制
bit1129
mongodb
MongoDB称为分布式数据库,主要原因是1.基于副本集的数据备份, 2.基于切片的数据扩容。副本集解决数据的读写性能问题,切片解决了MongoDB的数据扩容问题。
事实上,MongoDB提供了主从复制和副本复制两种备份方式,在MongoDB的主从复制和副本复制集群环境中,只有一台作为主服务器,另外一台或者多台服务器作为从服务器。 本文介绍MongoDB的主从复制模式,需要指明
- 【HBase五】Java API操作HBase
bit1129
hbase
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.HColumnDescriptor;
import org.apache.ha
- python调用zabbix api接口实时展示数据
ronin47
zabbix api接口来进行展示。经过思考之后,计划获取如下内容: 1、 获得认证密钥 2、 获取zabbix所有的主机组 3、 获取单个组下的所有主机 4、 获取某个主机下的所有监控项  
- jsp取得绝对路径
byalias
绝对路径
在JavaWeb开发中,常使用绝对路径的方式来引入JavaScript和CSS文件,这样可以避免因为目录变动导致引入文件找不到的情况,常用的做法如下:
一、使用${pageContext.request.contextPath}
代码” ${pageContext.request.contextPath}”的作用是取出部署的应用程序名,这样不管如何部署,所用路径都是正确的。
- Java定时任务调度:用ExecutorService取代Timer
bylijinnan
java
《Java并发编程实战》一书提到的用ExecutorService取代Java Timer有几个理由,我认为其中最重要的理由是:
如果TimerTask抛出未检查的异常,Timer将会产生无法预料的行为。Timer线程并不捕获异常,所以 TimerTask抛出的未检查的异常会终止timer线程。这种情况下,Timer也不会再重新恢复线程的执行了;它错误的认为整个Timer都被取消了。此时,已经被
- SQL 优化原则
chicony
sql
一、问题的提出
在应用系统开发初期,由于开发数据库数据比较少,对于查询SQL语句,复杂视图的的编写等体会不出SQL语句各种写法的性能优劣,但是如果将应用系统提交实际应用后,随着数据库中数据的增加,系统的响应速度就成为目前系统需要解决的最主要的问题之一。系统优化中一个很重要的方面就是SQL语句的优化。对于海量数据,劣质SQL语句和优质SQL语句之间的速度差别可以达到上百倍,可见对于一个系统
- java 线程弹球小游戏
CrazyMizzz
java游戏
最近java学到线程,于是做了一个线程弹球的小游戏,不过还没完善
这里是提纲
1.线程弹球游戏实现
1.实现界面需要使用哪些API类
JFrame
JPanel
JButton
FlowLayout
Graphics2D
Thread
Color
ActionListener
ActionEvent
MouseListener
Mouse
- hadoop jps出现process information unavailable提示解决办法
daizj
hadoopjps
hadoop jps出现process information unavailable提示解决办法
jps时出现如下信息:
3019 -- process information unavailable3053 -- process information unavailable2985 -- process information unavailable2917 --
- PHP图片水印缩放类实现
dcj3sjt126com
PHP
<?php
class Image{
private $path;
function __construct($path='./'){
$this->path=rtrim($path,'/').'/';
}
//水印函数,参数:背景图,水印图,位置,前缀,TMD透明度
public function water($b,$l,$pos
- IOS控件学习:UILabel常用属性与用法
dcj3sjt126com
iosUILabel
参考网站:
http://shijue.me/show_text/521c396a8ddf876566000007
http://www.tuicool.com/articles/zquENb
http://blog.csdn.net/a451493485/article/details/9454695
http://wiki.eoe.cn/page/iOS_pptl_artile_281
- 完全手动建立maven骨架
eksliang
javaeclipseWeb
建一个 JAVA 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=App
[-Dversion=0.0.1-SNAPSHOT]
[-Dpackaging=jar]
建一个 web 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=web-a
- 配置清单
gengzg
配置
1、修改grub启动的内核版本
vi /boot/grub/grub.conf
将default 0改为1
拷贝mt7601Usta.ko到/lib文件夹
拷贝RT2870STA.dat到 /etc/Wireless/RT2870STA/文件夹
拷贝wifiscan到bin文件夹,chmod 775 /bin/wifiscan
拷贝wifiget.sh到bin文件夹,chm
- Windows端口被占用处理方法
huqiji
windows
以下文章主要以80端口号为例,如果想知道其他的端口号也可以使用该方法..........................1、在windows下如何查看80端口占用情况?是被哪个进程占用?如何终止等. 这里主要是用到windows下的DOS工具,点击"开始"--"运行",输入&
- 开源ckplayer 网页播放器, 跨平台(html5, mobile),flv, f4v, mp4, rtmp协议. webm, ogg, m3u8 !
天梯梦
mobile
CKplayer,其全称为超酷flv播放器,它是一款用于网页上播放视频的软件,支持的格式有:http协议上的flv,f4v,mp4格式,同时支持rtmp视频流格 式播放,此播放器的特点在于用户可以自己定义播放器的风格,诸如播放/暂停按钮,静音按钮,全屏按钮都是以外部图片接口形式调用,用户根据自己的需要制作 出播放器风格所需要使用的各个按钮图片然后替换掉原始风格里相应的图片就可以制作出自己的风格了,
- 简单工厂设计模式
hm4123660
java工厂设计模式简单工厂模式
简单工厂模式(Simple Factory Pattern)属于类的创新型模式,又叫静态工厂方法模式。是通过专门定义一个类来负责创建其他类的实例,被创建的实例通常都具有共同的父类。简单工厂模式是由一个工厂对象决定创建出哪一种产品类的实例。简单工厂模式是工厂模式家族中最简单实用的模式,可以理解为是不同工厂模式的一个特殊实现。
- maven笔记
zhb8015
maven
跳过测试阶段:
mvn package -DskipTests
临时性跳过测试代码的编译:
mvn package -Dmaven.test.skip=true
maven.test.skip同时控制maven-compiler-plugin和maven-surefire-plugin两个插件的行为,即跳过编译,又跳过测试。
指定测试类
mvn test
- 非mapreduce生成Hfile,然后导入hbase当中
Stark_Summer
maphbasereduceHfilepath实例
最近一个群友的boss让研究hbase,让hbase的入库速度达到5w+/s,这可愁死了,4台个人电脑组成的集群,多线程入库调了好久,速度也才1w左右,都没有达到理想的那种速度,然后就想到了这种方式,但是网上多是用mapreduce来实现入库,而现在的需求是实时入库,不生成文件了,所以就只能自己用代码实现了,但是网上查了很多资料都没有查到,最后在一个网友的指引下,看了源码,最后找到了生成Hfile
- jsp web tomcat 编码问题
王新春
tomcatjsppageEncode
今天配置jsp项目在tomcat上,windows上正常,而linux上显示乱码,最后定位原因为tomcat 的server.xml 文件的配置,添加 URIEncoding 属性:
<Connector port="8080" protocol="HTTP/1.1"
connectionTi