利用PyTorch建立一个多层感知模型

本文利用PyTorch建立一个多层感知模型, 来分类iris数据集。

目录

导入数据

建立PyTorch DataSet

建立模型: 模型有两层NN

定义损失函数, 以及optimizer

训练模型

画出loss 与 accuracy

在test 数据集上检测

 保存训练的模型


导入数据

from sklearn.datasets import load_iris 
from sklearn.model_selection import train_test_split 

iris = load_iris()
X = iris['data']
y = iris['target']

X_train, X_test, y_train, y_test = train_test_split(
 X, y, test_size = 1./3, random_state=1)

三分之二的数据用于训练, 三分之一的用于test.

建立PyTorch DataSet: 

import numpy as np  
import torch 
from torch.utils.data import TensorDataset, DataLoader 

X_train_norm = (X_train - np.mean(X_train)) / np.std(X_train)
X_train_norm = torch.from_numpy(X_train_norm).float()
y_train = torch.from_numpy(y_train)
train_ds = TensorDataset(X_train_norm, y_train)
batch_size = 2 
train_dl = DataLoader(train_ds, batch_size, shuffle=True)

建立模型: 模型有两层NN

import torch.nn as nn 
class Model(nn.Module): 
    def __init__(self, input_size, hidden_size, output_size):
        super().__init__()
        self.layer1 = nn.Linear(input_size, hidden_size)
        self.layer2 = nn.Linear(hidden_size, output_size)
    
    def forward(self, x):
        x = self.layer1(x)
        x = nn.Sigmoid()(x)
        x = self.layer2(x) 
        x = nn.Softmax(dim=1)(x)
        return x 

input_size = X_train_norm.shape[1]
hidden_size = 16
output_size = 3 
model = Model(input_size, hidden_size, output_size)

iris 数据集 有三种花, 所以output_size = 3,

隐藏层 定义了16个 节点。 

第一层后 用sigmoid函数激活。 

第二层后 用softmax函数 分类。 

定义损失函数, 以及optimizer

learning_rate = 0.001 
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

训练模型

num_epochs = 100
loss_hist = [0] * num_epochs 
accuracy_hist = [0] * num_epochs 

for epoch in range(num_epochs):
    for x_batch, y_batch in train_dl:
        #预测 output
        pred = model(x_batch)
        #计算损失
        loss = loss_fn(pred, y_batch) 
        #计算梯度
        loss.backward()
        #更新权重
        optimizer.step()
        #梯度归0
        optimizer.zero_grad()      
        loss_hist[epoch] += loss.item() * y_batch.size(0)
        is_correct = (torch.argmax(pred, dim=1) == y_batch).float()
        accuracy_hist[epoch] += is_correct.sum()
    loss_hist[epoch] /= len(train_dl.dataset)
    accuracy_hist[epoch] /= len(train_dl.dataset)

loss_hist 与 accuracy_hist中储存了每个epoch的 loss 与 accuracy

X_test_norm = (X_test - np.mean(X_train)) / np.std(X_train)
X_test_norm = torch.from_numpy(X_test_norm).float()
y_test = torch.from_numpy(y_test)
pred_test = model(X_test_norm)
correct = (torch.argmax(pred_test, dim=1) ==y_test).float()
accuracy = correct.mean()
print(f'Test ACC: {accuracy:.4f}')



Test ACC: 0.9800

画出loss 与 accuracy

import matplotlib.pyplot as plt 

fig = plt.figure(figsize=(12, 5))
ax = fig.add_subplot(1, 2, 1)
ax.plot(loss_hist, lw=3)
ax.set_xlabel('epoch', size=15)
ax.tick_params(axis='both', which='major', labelsize=15)

ax = fig.add_subplot(1, 2, 2)
ax.plot(accuracy_hist, lw=3)
ax.set_title('Training accuracy', size=15)
ax.set_xlabel('Epoch', size=15)
ax.tick_params(axis='both', which='major', labelsize=15)
plt.show()

利用PyTorch建立一个多层感知模型_第1张图片

在test 数据集上检测:

X_test_norm = (X_test - np.mean(X_train)) / np.std(X_train)
X_test_norm = torch.from_numpy(X_test_norm).float()
y_test = torch.from_numpy(y_test)
pred_test = model(X_test_norm)
correct = (torch.argmax(pred_test, dim=1) ==y_test).float()
accuracy = correct.mean()
print(f'Test ACC: {accuracy:.4f}')


Test ACC: 0.9800

 保存训练的模型

save_path = 'iris_classifier.pt'
torch.save(model, save_path)

载入保存的模型

model_new = torch.load(save_path)

来看看模型的结构:

model_new.eval()



Model(
  (layer1): Linear(in_features=4, out_features=16, bias=True)
  (layer2): Linear(in_features=16, out_features=3, bias=True)
)

利用载入的模型 预测:

pred_test = model_new(X_test_norm) 
correct = (torch.argmax(pred_test, dim=1) == y_test).float()
accuracy = correct.mean()
print(f"Test accuracy: {accuracy:.4f}")


Test accuracy: 0.9800

只保存 训练得到的参数:

path = 'iris_classifier_state.pt'
torch.save(model.state_dict(), path)

在模型中载入保存的参数:

model_new = Model(input_size, hidden_size, output_size)
model_new.load_state_dict(torch.load(path))



参考自:  Machine Learning with PyTorch and Scikit-Learn Book  by Sebastian Raschka

你可能感兴趣的:(pytorch,深度学习,机器学习)