将注意力汇聚的输出计算可以作为值的加权平均,选择不同的注意力评分函数会带来不同的注意力汇聚操作。
当查询和键是不同长度的矢量时,可以使用可加性注意力评分函数。当它们的长度相同时,使用缩放的“点-积”注意力评分函数的计算效率更高。
注意力汇聚:Nadaraya-Watson 核回归_流萤数点的博客-CSDN博客使用了高斯核来对查询和键之间的关系建模。 (10.2.6)中的 高斯核指数部分可以视为注意力评分函数(attention scoring function), 简称评分函数(scoring function), 然后把这个函数的输出结果输入到softmax函数中进行运算。 通过上述步骤,将得到与键对应的值的概率分布(即注意力权重)。 最后,注意力汇聚的输出就是基于这些注意力权重的值的加权和。
从宏观来看,上述算法可以用来实现 图10.1.3中的注意力机制框架。
图10.3.1说明了 如何将注意力汇聚的输出计算成为值的加权和, 其中a表示注意力评分函数。 由于注意力权重是概率分布, 因此加权和其本质上是加权平均值。
正如上图所示,选择不同的注意力评分函数a会导致不同的注意力汇聚操作。 本节将介绍两个流行的评分函数,稍后将用他们来实现更复杂的注意力机制。
pip install mxnet==1.7.0.post1
pip install d2l==0.15.0
import math
from mxnet import np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l
npx.set_np()
正如上面提到的,softmax操作用于输出一个概率分布作为注意力权重。 在某些情况下,并非所有的值都应该被纳入到注意力汇聚中。 例如,为了在 9.5节中高效处理小批量数据集, 某些文本序列被填充了没有意义的特殊词元。 为了仅将有意义的词元作为值来获取注意力汇聚, 可以指定一个有效序列长度(即词元的个数), 以便在计算softmax时过滤掉超出指定范围的位置。 下面的masked_softmax
函数 实现了这样的掩蔽softmax操作(masked softmax operation), 其中任何超出有效长度的位置都被掩蔽并置为0。
#@save
def masked_softmax(X, valid_lens):
"""通过在最后一个轴上掩蔽元素来执行softmax操作"""
# X:3D张量,valid_lens:1D或2D张量
if valid_lens is None:
return npx.softmax(X)
else:
shape = X.shape
if valid_lens.ndim == 1:
valid_lens = valid_lens.repeat(shape[1])
else:
valid_lens = valid_lens.reshape(-1)
# 最后一轴上被掩蔽的元素使用一个非常大的负值替换,从而其softmax输出为0
X = npx.sequence_mask(X.reshape(-1, shape[-1]), valid_lens, True,
value=-1e6, axis=1)
return npx.softmax(X).reshape(shape)
为了演示此函数是如何工作的, 考虑由两个2×4矩阵表示的样本, 这两个样本的有效长度分别为2和3。 经过掩蔽softmax操作,超出有效长度的值都被掩蔽为0。
masked_softmax(np.random.uniform(size=(2, 2, 4)), np.array([2, 3]))
array([[[0.488994 , 0.511006 , 0. , 0. ], [0.4365484 , 0.56345165, 0. , 0. ]], [[0.288171 , 0.3519408 , 0.3598882 , 0. ], [0.29034296, 0.25239873, 0.45725837, 0. ]]])
同样,也可以使用二维张量,为矩阵样本中的每一行指定有效长度。
masked_softmax(np.random.uniform(size=(2, 2, 4)),
np.array([[1, 3], [2, 4]]))
array([[[1. , 0. , 0. , 0. ], [0.35848376, 0.3658879 , 0.27562833, 0. ]], [[0.54370314, 0.45629686, 0. , 0. ], [0.19598778, 0.25580427, 0.19916739, 0.3490406 ]]])
下面来实现加性注意力。
#@save
class AdditiveAttention(nn.Block):
"""加性注意力"""
def __init__(self, num_hiddens, dropout, **kwargs):
super(AdditiveAttention, self).__init__(**kwargs)
# 使用'flatten=False'只转换最后一个轴,以便其他轴的形状保持不变
self.W_k = nn.Dense(num_hiddens, use_bias=False, flatten=False)
self.W_q = nn.Dense(num_hiddens, use_bias=False, flatten=False)
self.w_v = nn.Dense(1, use_bias=False, flatten=False)
self.dropout = nn.Dropout(dropout)
def forward(self, queries, keys, values, valid_lens):
queries, keys = self.W_q(queries), self.W_k(keys)
# 在维度扩展后,
# queries的形状:(batch_size,查询的个数,1,num_hidden)
# key的形状:(batch_size,1,“键-值”对的个数,num_hiddens)
# 使用广播的方式进行求和
features = np.expand_dims(queries, axis=2) + np.expand_dims(
keys, axis=1)
features = np.tanh(features)
# self.w_v仅有一个输出,因此从形状中移除最后那个维度。
# scores的形状:(batch_size,查询的个数,“键-值”对的个数)
scores = np.squeeze(self.w_v(features), axis=-1)
self.attention_weights = masked_softmax(scores, valid_lens)
# values的形状:(batch_size,“键-值”对的个数,值的维度)
return npx.batch_dot(self.dropout(self.attention_weights), values)
用一个小例子来演示上面的AdditiveAttention
类, 其中查询、键和值的形状为(批量大小,步数或词元序列长度,特征大小), 实际输出为(2,1,20)、(2,10,2)和(2,10,4)。 注意力汇聚输出的形状为(批量大小,查询的步数,值的维度)。
queries, keys = np.random.normal(0, 1, (2, 1, 20)), np.ones((2, 10, 2))
# values的小批量数据集中,两个值矩阵是相同的
values = np.arange(40).reshape(1, 10, 4).repeat(2, axis=0)
valid_lens = np.array([2, 6])
attention = AdditiveAttention(num_hiddens=8, dropout=0.1)
attention.initialize()
attention(queries, keys, values, valid_lens)
array([[[ 2. , 3. , 4. , 5. ]], [[10. , 11. , 12.000001, 13. ]]])
尽管加性注意力包含了可学习的参数,但由于本例子中每个键都是相同的, 所以注意力权重是均匀的,由指定的有效长度决定。
#@save
def show_heatmaps(matrices, xlabel, ylabel, titles=None, figsize=(2.5, 2.5),
cmap='Reds'):
"""显示矩阵热图"""
d2l.use_svg_display()
num_rows, num_cols = matrices.shape[0], matrices.shape[1]
fig, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize,
sharex=True, sharey=True, squeeze=False)
for i, (row_axes, row_matrices) in enumerate(zip(axes, matrices)):
for j, (ax, matrix) in enumerate(zip(row_axes, row_matrices)):
pcm = ax.imshow(matrix.asnumpy(), cmap=cmap)
if i == num_rows - 1:
ax.set_xlabel(xlabel)
if j == 0:
ax.set_ylabel(ylabel)
if titles:
ax.set_title(titles[j])
fig.colorbar(pcm, ax=axes, shrink=0.6);
show_heatmaps(attention.attention_weights.reshape((1, 1, 2, 10)),
xlabel='Keys', ylabel='Queries')
使用点积可以得到计算效率更高的评分函数, 但是点积操作要求查询和键具有相同的长度d。 假设查询和键的所有元素都是独立的随机变量, 并且都满足零均值和单位方差, 那么两个向量的点积的均值为0,方差为d。 为确保无论向量长度如何, 点积的方差在不考虑向量长度的情况下仍然是1, 我们再将点积除以, 则缩放点积注意力(scaled dot-product attention)评分函数为:
下面的缩放点积注意力的实现使用了暂退法进行模型正则化。
#@save
class DotProductAttention(nn.Block):
"""缩放点积注意力"""
def __init__(self, dropout, **kwargs):
super(DotProductAttention, self).__init__(**kwargs)
self.dropout = nn.Dropout(dropout)
# queries的形状:(batch_size,查询的个数,d)
# keys的形状:(batch_size,“键-值”对的个数,d)
# values的形状:(batch_size,“键-值”对的个数,值的维度)
# valid_lens的形状:(batch_size,)或者(batch_size,查询的个数)
def forward(self, queries, keys, values, valid_lens=None):
d = queries.shape[-1]
# 设置transpose_b=True为了交换keys的最后两个维度
scores = npx.batch_dot(queries, keys, transpose_b=True) / math.sqrt(d)
self.attention_weights = masked_softmax(scores, valid_lens)
return npx.batch_dot(self.dropout(self.attention_weights), values)
为了演示上述的DotProductAttention
类, 我们使用与先前加性注意力例子中相同的键、值和有效长度。 对于点积操作,我们令查询的特征维度与键的特征维度大小相同。
queries = np.random.normal(0, 1, (2, 1, 2))
attention = DotProductAttention(dropout=0.5)
attention.initialize()
attention(queries, keys, values, valid_lens)
array([[[ 2. , 3. , 4. , 5. ]], [[10. , 11. , 12.000001, 13. ]]])
与加性注意力演示相同,由于键包含的是相同的元素, 而这些元素无法通过任何查询进行区分,因此获得了均匀的注意力权重。
show_heatmaps(attention.attention_weights.reshape((1, 1, 2, 10)),
xlabel='Keys', ylabel='Queries')