多旋翼无人机APM(PIX)飞控ardupilot missionplanner扩展调参、基本调参(PID调参)

 

目录

 

         1 APM(PIX)飞控ardupilot missionplanner扩展调参、基本调参默认值

2  Copter Home

3  调参各部分的解析示意图

4  在飞行中调roll和pitch(以遥控输入第六通道调参为例)


 

https://ardupilot.org/copter/index.html

P ID到底是个什么东西?

P是比例,i是积分,d是微分。

Pid控制在工程上有广泛的应用。不需要精确的数学模型,尤其是用于复杂的非线性系统。通过调整三个参数实现稳定的控制。

比例是p。比例据说决定着响应的速度,反应的速度。在操作时的稳定性一些动态指标。这个过高的响应快对于追求速度和灵敏性的飞机或许是好事。但是对于追求精确度,稳定性的飞机未必是好事。因为很难通过一个参数来确定你所需要的位置。所以说可能会需要你反复的在修正。就好比你站在翘翘板上。偏左了,你抓紧往右跑。偏右了,你抓紧往左跑。颤颤微微很难保持一个稳定的姿势。最后导致不停的颤。如果要用丝滑的操作还得用到后边的。

积分是I,积分影响稳态精度,据说类似于一个阻尼器。用来消除系统的误差。积分会带来相位滞后。积分值如果过大,同样会引起系统的不稳定。还比如你站在翘翘板上。此时你不管向左或者向右。板子上涂了胶会影响你的速度。你的动作不再那么迅捷。但是,也趋于稳定。这个值太大了也不行,会让你行动迟钝。

微分是d。他影响偏差变化率,据说它的原理是提前加入误差的修正功能。消除过大的误差,从而优化积分对系统响应速度阻滞,但是他的数值太大了,也会造成误差的误差。进一步破坏系统的稳定性。

通通这些在mission planner都是有限制的。也就是说你不可能无限制的调整微分积分比例。有的是相互引用的关系。一个确定了,下一个可能只能调小而无法克服上限。这些都是在计算后所进行的系统的限定。总体是会趋向与保证系统的稳定性。

也正因为pId调参如此的个性化,很难找到一个完美的参数。只能自己去试了。但还是有一些规律性的东西和限制性的因素可以供我们参考。

说个笑话吧。比例,积分,微分好比是孩子要相互打架。别人骂了你一句相当于遥控来的指令。你要打他,这时候就是控制好比例(力)P,你打不能太重,也不能太轻,不能把人打死,也不能形不成威慑。如果你打过了,被打的这个人就开始积分(愤)I。他要还手了。当然了,他也不能过重或过轻。如果正好大家觉得平了,这事儿或许就了了。这个时候班长来了,班长权威是个(威)微分D,班长希望你们消除误会,或者他觉得你们还不平衡干脆互打一巴掌这事儿扯平了。当然啦,他如果煽风点火,也可以引起你们的再次殴打。这个稳定性看他会不会调停。

 

1 APM(PIX)飞控ardupilot missionplanner扩展调参、基本调参默认值

多旋翼无人机APM(PIX)飞控ardupilot missionplanner扩展调参、基本调参(PID调参)_第1张图片

多旋翼无人机APM(PIX)飞控ardupilot missionplanner扩展调参、基本调参(PID调参)_第2张图片

自动翻译如图。多旋翼无人机APM(PIX)飞控ardupilot missionplanner扩展调参、基本调参(PID调参)_第3张图片部分参数含义 多旋翼无人机APM(PIX)飞控ardupilot missionplanner扩展调参、基本调参(PID调参)_第4张图片

 


雷迅创新 © www.cuav.net与ardupilot具有合作关系,在ardupilot官方网站https://ardupilot.org/copter/index.html

tips链接中,也可以连接至该网站。

2  Copter Home

ArduPilot

Success with ArduPilot requires that the 'First Time Setup' and 'First Flight/Drive and Tuning' sections of this documentation be read and followed!

Tip

Keep up with the latest ArduPilot related blogs on ArduPilot.org!

 

This is the full-featured, open-source multicopter UAV controller that won the Sparkfun 2013 and 2014 Autonomous Vehicle Competition (dominating with the top five spots). A team of developers from around the globe are constantly improving and refining the performance and capabilities of ArduCopter.

 

Copter is capable of the full range of flight requirements from fast paced FPV racing to smooth aerial photography, and fully autonomous complex missions which can be programmed through a number of compatible software ground stations. The entire package is designed to be safe, feature rich, open-ended for custom applications, and is increasingly easy to use even for the novice.

     

System components

  • A Pixhawk or other autopilot loaded with the latest version of the Copter firmware.
  • Mission Planner software – gives you an easy point-and-click setup/configuration, and a full-featured ground control interface.
  • This Copter Wiki provides all the information you need to set up and operate a multicopter or traditional helicopter.
  • A suitable MultiCopter or Helicopter for your mission.
  • Plus many other useful options: e.g. data radios, which allow two-way wireless telemetry and control between the vehicle and your computer.

Rotor Craft types

Multicopters:

  • Utilize differential thrust management of independent motor-prop units to provide lift and directional control
  • Benefit from mechanical simplicity and design flexibility
  • A capable payload lifter that’s functional in strong wind conditions
  • Redundant lift sources can give increased margin of safety
  • Varied form factor allows convenient options for payload mounting.

Helicopters:

  • Typically use a single lifting rotor with two or more blades
  • Maintain directional control by varying blade pitch via servo-actuated mechanical linkage (many versions of these craft exist and it is beyond the scope of this manual to cover them all – the mechanical systems used in helicopters warrant special study and consideration)
  • Strong, fast and efficient – a proven-worker suitable to many missions.

Because of its open design, Copter also supports more unusual frame types including the Single and Coax-Copters. Put this together with Plane, Rover and Antenna Tracker and you have a system of robotic vehicles that can be controlled through very similar interfaces to accomplish a wide variety of tasks.

多旋翼无人机APM(PIX)飞控ardupilot missionplanner扩展调参、基本调参(PID调参)_第5张图片


Getting more info

  • Continue to the Introduction section of this wiki.
  • Use the ArduPilot Discuss Server Forums to ask support questions and advice.
  • To get involved with the development of the software platform, visit the ArduPilot development guide.

Tip

For a simplified chinese 简体中文 version abstract of this wiki please check ArduPilot.org partner CUAV!


以下内容引自 雷迅创新 © www.cuav.net 有着清晰的图像表述。

3  调参各部分的解析示意图

多旋翼无人机APM(PIX)飞控ardupilot missionplanner扩展调参、基本调参(PID调参)_第6张图片

遥控感度:飞手使用遥控器操纵时飞行器的响应速度,值越大响应也越快,大的值适合穿越,小的值适合航拍,理论上效率越高的飞行器值越小,pid首先调整该参数。

4  在飞行中调roll和pitch(以遥控输入第六通道调参为例)

首先需要在遥控器校准的时候把第六通道校准,然后设置第六通道为Rate Roll / Pitch kP,设最小值为0.08,最大值为0.20(一般飞机在该范围),点击写入。

将遥控器的ch6旋钮扭转到最小的位置,按刷新参数按钮,确保速率roll p和速率pitch P变为0.08(或非常接近)

将遥控器ch6旋钮扭转到最大位置,按刷新参数,确保roll移动到0.20

多旋翼无人机APM(PIX)飞控ardupilot missionplanner扩展调参、基本调参(PID调参)_第7张图片

在自稳模式下飞行,并转动旋钮直至飞机飞行稳定而不是抖动。

去掉飞行器电池,使用usb连接地面站,确保ch6旋钮处于飞行性能最佳的时候的位置,切换到扩展调参界面记录好pid值,重新输入您看到的值并小幅修改,写将ch6修改为none,点击写入。

 

 

 

 

你可能感兴趣的:(无人机,mission,planner,java,服务器,servlet)