0.介绍
facebook开发的图像检索框架
1.安装
conda install -c pytorch faiss-cpu
conda install -c pytorch faiss-gpu cudatoolkit=10.2 # for CUDA 10.2
conda install -c pytorch faiss-gpu cudatoolkit=11.3 # for CUDA 11.3
2.应用
import numpy as np
d = 64 # dimension
nb = 100000 # database size
nq = 10000 # nb of queries
np.random.seed(1234) # make reproducible
xb = np.random.random((nb, d)).astype('float32')
xb[:, 0] += np.arange(nb) / 1000.
xq = np.random.random((nq, d)).astype('float32')
xq[:, 0] += np.arange(nq) / 1000.
import faiss # make faiss available
index = faiss.IndexFlatL2(d) # build the index
print(index.is_trained)
index.add(xb) # add vectors to the index
print(index.ntotal)
k = 4 # we want to see 4 nearest neighbors
D, I = index.search(xb[:5], k) # sanity check
print(I)
print(D)
D, I = index.search(xq, k) # actual search
print(I[:5]) # neighbors of the 5 first queries
print(I[-5:]) # neighbors of the 5 last queries
m = 16 # number of subquantizers
n_bits = 8 # bits allocated per subquantizer
pq = faiss.IndexPQ (d, m, n_bits) # Create the index
pq.train (x_base) # Training
pq.add (x_base) # Populate the index
D, I = pq.search (x_query, k) # Perform a search
faiss 高级进阶
# -*- coding: utf-8 -*-
import faiss
import numpy as np
if __name__ == '__main__':
num = 50
d = 32
x = np.random.rand(num, d).astype('float32')
ids = np.arange(num).astype(np.int64)
# index = faiss.IndexFlatL2(d)
index = faiss.IndexIDMap(faiss.IndexFlatL2(d))
print(index.is_trained)
index.add_with_ids(x, ids)
print(index.ntotal)
# index.id_map.at(int(i)) for i in range(index.ntotal)
for i in range(index.ntotal):
print(index.id_map.at(i))
print("-"*20)
# 删除节点
count = 30
ids_del = [index.id_map.at(i) for i in range(index.ntotal - count)]
ids_del = np.array(ids_del, dtype=np.int64)
index.remove_ids(ids_del)
print(index.ntotal)
print("-"*20)
for i in range(index.ntotal):
print(index.id_map.at(i))
faiss hnsw gpu