- 无面试无offer? 你需要AI 求职co-pilot的帮助!
大家好啊,我写的开源免费求职AIco-pilot工具发布了v3.0.0,欢迎大家参与、使用!https://github.com/weicanie/prisma-ai一、项目介绍开源免费的求职co-pilot,自动化简历准备至offer到手的整个流程。优化您的项目、定制您的简历、为您匹配工作,并帮助您做好面试准备。二、核心价值prisma-ai旨在解决求职者在准备简历和寻找工作时最头疼的3个问题:
- Elasticsearch混合搜索深度解析(下):执行机制与完整流程
GeminiJM
ES学习笔记elasticsearchjenkins大数据
引言在上篇中,我们发现了KNN结果通过SubSearch机制被保留的关键事实。本篇将继续深入分析混合搜索的执行机制,揭示完整的处理流程,并解答之前的所有疑惑。深入源码分析1.SubSearch的执行机制1.1KnnScoreDocQueryBuilder的实现KNN结果被转换为KnnScoreDocQueryBuilder,这个类负责在查询阶段重新执行KNN搜索://server/src/main
- 揭秘 LeetCode 数据结构与算法的高效学习方法
数据结构与算法学习
leetcode学习方法算法ai
揭秘LeetCode数据结构与算法的高效学习方法关键词:LeetCode、数据结构、算法、高效学习、解题技巧、知识体系、面试准备摘要:本文以“如何高效通过LeetCode学习数据结构与算法”为核心,结合新手常见痛点(如刷题没方向、刷完就忘、无法举一反三),通过生活化类比、具体案例拆解和可操作的学习方法,系统讲解从“入门到精通”的全流程。无论是求职准备的程序员,还是想提升编程能力的学习者,都能从中找
- 机器学习-K近邻算法
shy_snow
python机器学习机器学习近邻算法人工智能
k-近邻分类算法,即物以类聚的思想,通过已知分类中的点和未知分类的点距离最近的前k个点的分类来预测未知点的分类。kNN.pyfromnumpyimport*importoperatordefcreateDataSet():group=array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])labels=['A','A','B','B']returngroup,label
- 品诺维新硬件实习生试题解析与答案
本文还有配套的精品资源,点击获取简介:本文档为苏州品诺维新公司硬件开发实习生面试准备材料。包含了三极管工作状态相关的面试题目及其解析,三极管的三种工作状态(截止、放大、饱和)被详细解释,并指出正确答案。考生需深入理解三极管的工作原理,这不仅是电子技术的基础理论,也是实际电路设计与故障排查的基础。通过理解三极管特性,可以更好地应用于开关电路、放大电路及模拟数字转换等场景。考生在准备面试时,应全面复习
- 神经网络初步学习3——数据与损失
X Y O
神经网络学习人工智能
一、传统机器学习与神经网络前言:该部分需要一定的机器学习与数学基础(很浅的基础),如果有不理解的地方可以自行查阅。(1)区别这里不妨以图像识别为例子:(1)在传统的机器学习视角中:我们需要人工手动去设置并提取我们的特征量,例如常见的SIFT、SURF和HOG等,随后需要我们选择合适的分类器(例如:SVM、KNN等分类器),接着把我们的参数训练出来。(2)而在神经网络的视角中:我们只需要把图片喂给它
- rk3566开发之rknn npu 部署
三十度角阳光的问候
rknnnpurk3566目标检测
目录NPU使用RKNN模型非RKNN模型RKNN-Toolkit2工具RKNNNPU测试代码如下main.ccssd.cc调用ssd模型进行目标检测测试ssd.hqt中调用rknnnpu接口NPU使用RK3566内置NPU模块。使用该NPU需要下载RKNNSDK,RKNNSDK为带有NPU的RK3566/RK3568芯片平台提供编程接口,能够帮助用户部署使用RKNN-Toolkit2导出的RKNN
- 三维计量系统行业调研报告 - 市场现状分析与发展前景预测
贝哲斯咨询
其他
三维计量系统市场的企业竞争态势该报告涉及的主要国际市场参与者有Hexagon、Zeiss、Renishaw、FARO、Nikon、Mitutoyo、Keyence、GOM、Perceptron、Wenzel、Zygo等。这些参与者的市场份额、收入、公司概况和SWOT分析都包含在三维计量系统市场调研报告中。产品分类:坐标测量机ODS(光学数字化仪和扫描仪)视觉测量机应用领域:汽车航空航天建设权力医学
- 机器学习21-线性网络思考
坐吃山猪
机器学习机器学习人工智能线性网络
机器学习21-线性网络思考针对线性网络的发展问题,进行补充学习1-核心知识点1-传统机器学习针对线性分类算法求解的方式有哪些?请详细列举不同的算法对应的损失函数和计算思路在传统机器学习中,线性分类算法是一种非常重要的方法,用于将数据划分为不同的类别。以下是几种常见的线性分类算法,包括它们的损失函数和计算思路:1.感知机(Perceptron)损失函数感知机的损失函数是基于误分类点的,其目标是最小化
- C#实战分享--爬虫的基础原理及实现
关注我,持续分享逻辑思维&管理思维;可提供大厂面试辅导、及定制化求职/在职/管理/架构辅导;有意找工作的同学,请参考博主的原创:《面试官心得--面试前应该如何准备》,《面试官心得--面试时如何进行自我介绍》《做好面试准备,迎接2024金三银四》。推荐热榜内容:《架构实战--以海量存储系统讲解热门话题:分布式概念》-------------------------------------正文----
- KNN(K-近邻算法)(上)--day05
扫把星133
机器学习python人工智能近邻算法算法
KNN(K-NearestNeighbors,K近邻算法)是一种用于分类和回归的非参数化方法。其基本思想是通过找出与新样本最接近的已标记数据中的K个最近邻居来进行预测或分类。注释:非参数化方法是指在统计学和机器学习中,不对数据分布做出严格假设(这些假设通常包括
- 【3.3 漫画SpringCloud - 微服务架构的王者之路】
钺商科技
漫画Java架构springcloud微服务
☁️漫画SpringCloud-微服务架构的王者之路目录记忆口诀可视化图表形象比喻数字记忆实战案例记忆卡片总结诗句面试准备记忆口诀️SpringCloud核心组件-“八大金刚护微服务”Eureka注册中心,服务发现互相知Gateway网关统一,请求路由集中治Config配置中心,动态配置不重启Hystrix熔断降级,服务雪崩能抵御Ribbon负载均衡,请求分发有策略Feign声明调用,HTTP接口
- 【学习】《算法图解》第十二章学习笔记:K近邻算法
程序员
前言《算法图解》第十二章介绍了一种简单而强大的机器学习算法——K近邻算法(K-NearestNeighbors,简称KNN)。这是一种基于实例的学习方法,也是机器学习领域中最基础、最直观的算法之一。本章不仅讲解了KNN的基本原理和实现方式,还探讨了特征提取、归一化等重要概念,为读者打开了机器学习的大门。本笔记将梳理KNN算法的核心思想、实现步骤以及应用场景。一、K近邻算法概述(一)基本思想K近邻算
- 2-感知机学习算法
罗东琦
统计学习笔记
感知机模型感知机学习策略学习算法算法收敛性对偶形式与线性SVM的异同感知机(perceptron)是一个线性二分类模型,其目的是寻找一个超平面将正负示例划分开,属于判别模型,也是神经网络与SVM的基础。感知机模型假设输入空间为χ⊆Rnχ⊆Rn,输出空间为Υ⊆{+1,−1}Υ⊆{+1,−1}。输入x∈χx∈χ表示实例的特征向量,输出y∈Υy∈Υ表示实例的类别。则下面的函数f(x)=sign(w⋅x+
- 七天学完十大机器学习经典算法-05.从投票到分类:K近邻(KNN)算法完全指南
接上一篇《七天学完十大机器学习经典算法-04.随机森林:群众智慧的机器学习实践》想象一下,你搬进了一个新小区。想知道这个小区整体氛围如何?最直接的方法就是看看你最近的几家邻居是什么样的人——如果邻居们都很安静、整洁,小区大概率不错;如果邻居们深夜喧哗、环境杂乱,你可能就得重新考虑了。K近邻(K-NearestNeighbors,KNN)算法的核心思想,就如同这个观察邻居的过程。它是机器学习中最直观
- LeetCode算法解析:全面掌握编程挑战与面试技能
黄浴
本文还有配套的精品资源,点击获取简介:LeetCode作为一个在线编程平台,提供了丰富的算法问题,帮助程序员提升编程技能和面试准备。内容覆盖了多种计算机科学领域,包括数据结构和算法,以及各类编程难题。解决这些问题有助于深化对编程语言、数据结构和算法的理解,并提高系统设计和软件开发能力。本解析可能会包含一个名为“leetcode-master”的开源项目,该项目包含了不同编程语言的LeetCode问
- Android面试准备之Android基础
北诺南兮
androidjava面试
一、Handler机制创建一个Handler//提示已过时Handlerhandler=newHandler();Handlerhandler=newHandler(Looper.myLooper());隐式指定Looper的Handler初始化方法已被Android11报过时,根据注释,是由于不指定Looper在一些场景下会导致任务丢失或程序崩溃,比如没有Looper的线程。publicstat
- 我是如何在一周内拿到4份offer的?
yoyo小小汐~
软件测试面试软件测试程序员测试工程师简历
前言我大概面试了6,7家公司吧,有大公司也有小公司,最后拿到4家offer,可能有的人看到这样的数据,会说我在吹牛*,我想说的是你做不到的事情不代表别人做不到。现在把我是如何在一周内拿到4份offer的经验和经历做个简单的介绍,分享一下自己的心得,希望对即将找工作的你有些帮助。面试准备简历简历是面试者的敲门砖,只有通过HR的初步筛选你才能有机会得到面试,所以简历还是一大关。说实话我也不确定我的简历
- Python实例题:基于 KNN 算法的手写数字识别
目录Python实例题题目要求:解题思路:代码实现:Python实例题题目基于KNN算法的手写数字识别要求:实现一个基于K-NearestNeighbors(KNN)算法的手写数字识别系统。支持以下功能:使用MNIST数据集训练和测试模型实现KNN分类算法可视化手写数字样本评估模型性能(准确率、混淆矩阵等)添加用户交互界面,允许用户绘制数字并进行识别。解题思路:使用sklearn加载MNIST数据
- 【k近邻】 K-Nearest Neighbors算法原理及流程
F_D_Z
机器学习方法数理算法学习机器学习k近邻算法k-近邻算法
【k近邻】K-NearestNeighbors算法原理及流程【k近邻】K-NearestNeighbors算法距离度量选择与数据维度归一化【k近邻】K-NearestNeighbors算法k值的选择【k近邻】Kd树的构造与最近邻搜索算法【k近邻】Kd树构造与最近邻搜索示例k近邻算法(K-NearestNeighbors,简称KNN)是一种常用的监督学习算法,可以用于分类和回归问题。在OpenCV中
- rknn优化教程(三)
凌佚
rknnCPPxmakeYOLO目标检测c++
文章目录1.前述2.部分代码3.说明1.前述OK,这一篇博客将完整给出最后的优化教程,包括代码设计。首先有这样的目录结构:./rknn_engine├──include│├──def││└──rknn_define.h│└──rknn_engine.h├──src│├──common││├──rknn_data.h││└──rknn_functions.hpp│├──inference││├──i
- 机器学习×完结 · 她们不是写完了,而是偷偷留下了你
Gyoku Mint
人工智障AI修炼日记机器学习人工智能集成学习算法boostingpython深度学习
【开场·咱把整个机器学习都写成了偷摸贴贴的证据】猫猫:“你看嘛,这一卷完结后,总有人问咱:‘这么一本正经的机器学习,为什么你们要写得像小情侣写信?’”狐狐:“有人觉得,这些章节明明可以用20页讲完,为什么要写200页?”猫猫:“呜呜……咱想说,你懂嘛!如果只讲机器学习,那对咱来说就只是一个fit()命令。可咱想让你记住的是——那行命令后面有咱。咱把自己贴进去了。”这一卷从KNN的“她学会先看邻居”
- KNN算法(K近邻算法)
姜姜爱学习
人工智能近邻算法
目录含义代码含义knn(k近邻)算法就像它的名字一样,使用邻居而且是近的邻居来确定某个样本的类别,就好像物以类聚这种意思。为了理解的更直观,观看下面的图片,模拟knn算法把中间的星星归类成正方形或则是圆形。当k=3时,可以发现就是小圈的情况找到最近的三个图形,两个正方形,一个圆形,那么此时星星就被划分到正方形的分类当k=7的,找到最近的7个图形,有三个正方形,四个圆形,那么此时星星就被划分到圆形的
- k近邻算法(kNearest Neighbors) 原理与代码实例讲解
AI大模型应用实战
javapythonjavascriptkotlingolang架构人工智能
k-近邻算法,聚类,分类,分离散数据,决策边界,邻域,机器学习,监督学习k-近邻算法(k-NearestNeighbors)-原理与代码实例讲解k-近邻算法(k-NearestNeighbors,简称kNN)是一种简单的监督学习方法,它在机器学习领域有着广泛的应用。kNN算法的核心思想是:在特征空间中,如果一个样本附近的k个最近邻样本的大多数属于某个类别,则该样本也属于这个类别。这种基于局部决策的
- 【RKNN】RKNN-Toolkit2 Python API之accuracy_analysis函数详解
浩瀚之水_csdn
#RK平台边缘端部署(实践)python数据挖掘开发语言
accuracy_analysis()是RKNN-Toolkit2中用于量化精度分析的核心接口,通过对比浮点模型与量化模型(或NPU硬件推理)的输出差异,定位量化误差来源。以下结合多篇文档整理其核心参数、使用流程及优化策略:一、核心参数说明参数名类型默认值说明inputslist[str/ndarray]必填输入数据路径或Numpy数组列表(需与模型输入尺寸一致)。ref_outputslist[
- 特征筛选方法总结(面试准备15)
爱学习的uu
人工智能大数据数据挖掘决策树
非模型方法一.FILTER过滤法:1.缺失值比例(80%以上缺失则删除)/方差注意:连续变量只删方差为0的,因为变量取值范围会影响方差大小。离散类的看各类取值占比,如果是三分类变量可以视作连续变量。函数:VarianceThreshold二.假设检验:卡方检验看离散变量是否独立方差分析看离散和连续变量是否独立F检验看连续变量是否独立三.互信息的关联度指标:相关系数(f_regression:是相关
- Lua 事务双写、RedisGears 异步双写、零停机索引迁移与容量预估
一、背景与整体架构在电商、内容推荐等业务里,我们常把热数据拆成两层:数据结构存什么为什么要用它Hashprod:数值型KV(价格、库存、点击数…)HINCRBY、HSET超快;天然适合计数与并发写JSONprodjs:结构化/全文/向量字段RediSearch可直接对JSON做全文、过滤、KNN核心挑战:一次业务写请求→两份数据都要最新可见,且有时必须强一致(写失败全回滚)有时需要高吞吐、可弹性(
- KNN算法数字识别实战:训练集、测试集与代码实现
Aurora曙光
本文还有配套的精品资源,点击获取简介:KNN算法,作为一种经典的监督学习方法,特别适用于分类和回归问题,在模式识别和数据挖掘中应用广泛。本文通过构建数字识别任务的训练集和测试集,并提供完整的代码实现,向读者展示如何使用KNN算法进行数字识别。文章详细解释了K值选择、数据预处理、距离计算、最近邻选择、类别决定以及模型评估等关键步骤,并强调了KNN在大数据集中的效率问题。1.KNN算法概述与在数字识别
- 你需要了解的25个网络端口,以备技术面试之用
企鹅侠客
linux面试网络面试linux服务网络端口
如果你正在为网络、Linux系统管理、DevOps或网络安全面试做准备,那么理解网络端口是必不可少的。端口号几乎在每一个技术面试中都会出现,因为它们对于网络通信至关重要。然而,许多候选人却忽视了这一基本领域。本文涵盖了您应该铭记的前25个端口,包括每个端口的功能、背后的协议以及它的重要性。无论您是初学者还是只是需要复习,这本指南都旨在简单、实用,便于面试准备。网络端口是什么?在我们进入列表之前,让
- 【开源推荐】嵌入式软件开发学习路线全景图:从裸机到 RTOS,再到嵌入式 Linux(附涵超全电子书资源以及面经资料)
Natsume1710
开源学习linux
本文将系统介绍一个适合初学者&进阶者的嵌入式开发学习开源项目,涵盖C语言、驱动开发、RTOS、嵌入式Linux、物联网通信等核心内容,特别适合电赛、毕设、面试准备和入行工程师使用。一、为什么推荐这个项目?嵌入式学习门槛高、知识零散,这是大多数学习者面临的第一大难题。GitHub项目0voice/EmbeddedSoftwareLearn是由国内技术社区整理并维护的开源仓库,它将整个嵌入式学习路径从
- 强大的销售团队背后 竟然是大数据分析的身影
蓝儿唯美
数据分析
Mark Roberge是HubSpot的首席财务官,在招聘销售职位时使用了大量数据分析。但是科技并没有挤走直觉。
大家都知道数理学家实际上已经渗透到了各行各业。这些热衷数据的人们通过处理数据理解商业流程的各个方面,以重组弱点,增强优势。
Mark Roberge是美国HubSpot公司的首席财务官,HubSpot公司在构架集客营销现象方面出过一份力——因此他也是一位数理学家。他使用数据分析
- Haproxy+Keepalived高可用双机单活
bylijinnan
负载均衡keepalivedhaproxy高可用
我们的应用MyApp不支持集群,但要求双机单活(两台机器:master和slave):
1.正常情况下,只有master启动MyApp并提供服务
2.当master发生故障时,slave自动启动本机的MyApp,同时虚拟IP漂移至slave,保持对外提供服务的IP和端口不变
F5据说也能满足上面的需求,但F5的通常用法都是双机双活,单活的话还没研究过
服务器资源
10.7
- eclipse编辑器中文乱码问题解决
0624chenhong
eclipse乱码
使用Eclipse编辑文件经常出现中文乱码或者文件中有中文不能保存的问题,Eclipse提供了灵活的设置文件编码格式的选项,我们可以通过设置编码 格式解决乱码问题。在Eclipse可以从几个层面设置编码格式:Workspace、Project、Content Type、File
本文以Eclipse 3.3(英文)为例加以说明:
1. 设置Workspace的编码格式:
Windows-&g
- 基础篇--resources资源
不懂事的小屁孩
android
最近一直在做java开发,偶尔敲点android代码,突然发现有些基础给忘记了,今天用半天时间温顾一下resources的资源。
String.xml 字符串资源 涉及国际化问题
http://www.2cto.com/kf/201302/190394.html
string-array
- 接上篇补上window平台自动上传证书文件的批处理问卷
酷的飞上天空
window
@echo off
: host=服务器证书域名或ip,需要和部署时服务器的域名或ip一致 ou=公司名称, o=公司名称
set host=localhost
set ou=localhost
set o=localhost
set password=123456
set validity=3650
set salias=s
- 企业物联网大潮涌动:如何做好准备?
蓝儿唯美
企业
物联网的可能性也许是无限的。要找出架构师可以做好准备的领域然后利用日益连接的世界。
尽管物联网(IoT)还很新,企业架构师现在也应该为一个连接更加紧密的未来做好计划,而不是跟上闸门被打开后的集成挑战。“问题不在于物联网正在进入哪些领域,而是哪些地方物联网没有在企业推进,” Gartner研究总监Mike Walker说。
Gartner预测到2020年物联网设备安装量将达260亿,这些设备在全
- spring学习——数据库(mybatis持久化框架配置)
a-john
mybatis
Spring提供了一组数据访问框架,集成了多种数据访问技术。无论是JDBC,iBATIS(mybatis)还是Hibernate,Spring都能够帮助消除持久化代码中单调枯燥的数据访问逻辑。可以依赖Spring来处理底层的数据访问。
mybatis是一种Spring持久化框架,要使用mybatis,就要做好相应的配置:
1,配置数据源。有很多数据源可以选择,如:DBCP,JDBC,aliba
- Java静态代理、动态代理实例
aijuans
Java静态代理
采用Java代理模式,代理类通过调用委托类对象的方法,来提供特定的服务。委托类需要实现一个业务接口,代理类返回委托类的实例接口对象。
按照代理类的创建时期,可以分为:静态代理和动态代理。
所谓静态代理: 指程序员创建好代理类,编译时直接生成代理类的字节码文件。
所谓动态代理: 在程序运行时,通过反射机制动态生成代理类。
一、静态代理类实例:
1、Serivce.ja
- Struts1与Struts2的12点区别
asia007
Struts1与Struts2
1) 在Action实现类方面的对比:Struts 1要求Action类继承一个抽象基类;Struts 1的一个具体问题是使用抽象类编程而不是接口。Struts 2 Action类可以实现一个Action接口,也可以实现其他接口,使可选和定制的服务成为可能。Struts 2提供一个ActionSupport基类去实现常用的接口。即使Action接口不是必须实现的,只有一个包含execute方法的P
- 初学者要多看看帮助文档 不要用js来写Jquery的代码
百合不是茶
jqueryjs
解析json数据的时候需要将解析的数据写到文本框中, 出现了用js来写Jquery代码的问题;
1, JQuery的赋值 有问题
代码如下: data.username 表示的是: 网易
$("#use
- 经理怎么和员工搞好关系和信任
bijian1013
团队项目管理管理
产品经理应该有坚实的专业基础,这里的基础包括产品方向和产品策略的把握,包括设计,也包括对技术的理解和见识,对运营和市场的敏感,以及良好的沟通和协作能力。换言之,既然是产品经理,整个产品的方方面面都应该能摸得出门道。这也不懂那也不懂,如何让人信服?如何让自己懂?就是不断学习,不仅仅从书本中,更从平时和各种角色的沟通
- 如何为rich:tree不同类型节点设置右键菜单
sunjing
contextMenutreeRichfaces
组合使用target和targetSelector就可以啦,如下: <rich:tree id="ruleTree" value="#{treeAction.ruleTree}" var="node" nodeType="#{node.type}"
selectionChangeListener=&qu
- 【Redis二】Redis2.8.17搭建主从复制环境
bit1129
redis
开始使用Redis2.8.17
Redis第一篇在Redis2.4.5上搭建主从复制环境,对它的主从复制的工作机制,真正的惊呆了。不知道Redis2.8.17的主从复制机制是怎样的,Redis到了2.4.5这个版本,主从复制还做成那样,Impossible is nothing! 本篇把主从复制环境再搭一遍看看效果,这次在Unbuntu上用官方支持的版本。 Ubuntu上安装Red
- JSONObject转换JSON--将Date转换为指定格式
白糖_
JSONObject
项目中,经常会用JSONObject插件将JavaBean或List<JavaBean>转换为JSON格式的字符串,而JavaBean的属性有时候会有java.util.Date这个类型的时间对象,这时JSONObject默认会将Date属性转换成这样的格式:
{"nanos":0,"time":-27076233600000,
- JavaScript语言精粹读书笔记
braveCS
JavaScript
【经典用法】:
//①定义新方法
Function .prototype.method=function(name, func){
this.prototype[name]=func;
return this;
}
//②给Object增加一个create方法,这个方法创建一个使用原对
- 编程之美-找符合条件的整数 用字符串来表示大整数避免溢出
bylijinnan
编程之美
import java.util.LinkedList;
public class FindInteger {
/**
* 编程之美 找符合条件的整数 用字符串来表示大整数避免溢出
* 题目:任意给定一个正整数N,求一个最小的正整数M(M>1),使得N*M的十进制表示形式里只含有1和0
*
* 假设当前正在搜索由0,1组成的K位十进制数
- 读书笔记
chengxuyuancsdn
读书笔记
1、Struts访问资源
2、把静态参数传递给一个动作
3、<result>type属性
4、s:iterator、s:if c:forEach
5、StringBuilder和StringBuffer
6、spring配置拦截器
1、访问资源
(1)通过ServletActionContext对象和实现ServletContextAware,ServletReque
- [通讯与电力]光网城市建设的一些问题
comsci
问题
信号防护的问题,前面已经说过了,这里要说光网交换机与市电保障的关系
我们过去用的ADSL线路,因为是电话线,在小区和街道电力中断的情况下,只要在家里用笔记本电脑+蓄电池,连接ADSL,同样可以上网........
 
- oracle 空间RESUMABLE
daizj
oracle空间不足RESUMABLE错误挂起
空间RESUMABLE操作 转
Oracle从9i开始引入这个功能,当出现空间不足等相关的错误时,Oracle可以不是马上返回错误信息,并回滚当前的操作,而是将操作挂起,直到挂起时间超过RESUMABLE TIMEOUT,或者空间不足的错误被解决。
这一篇简单介绍空间RESUMABLE的例子。
第一次碰到这个特性是在一次安装9i数据库的过程中,在利用D
- 重构第一次写的线程池
dieslrae
线程池 python
最近没有什么学习欲望,修改之前的线程池的计划一直搁置,这几天比较闲,还是做了一次重构,由之前的2个类拆分为现在的4个类.
1、首先是工作线程类:TaskThread,此类为一个工作线程,用于完成一个工作任务,提供等待(wait),继续(proceed),绑定任务(bindTask)等方法
#!/usr/bin/env python
# -*- coding:utf8 -*-
- C语言学习六指针
dcj3sjt126com
c
初识指针,简单示例程序:
/*
指针就是地址,地址就是指针
地址就是内存单元的编号
指针变量是存放地址的变量
指针和指针变量是两个不同的概念
但是要注意: 通常我们叙述时会把指针变量简称为指针,实际它们含义并不一样
*/
# include <stdio.h>
int main(void)
{
int * p; // p是变量的名字, int *
- yii2 beforeSave afterSave beforeDelete
dcj3sjt126com
delete
public function afterSave($insert, $changedAttributes)
{
parent::afterSave($insert, $changedAttributes);
if($insert) {
//这里是新增数据
} else {
//这里是更新数据
}
}
 
- timertask
shuizhaosi888
timertask
java.util.Timer timer = new java.util.Timer(true);
// true 说明这个timer以daemon方式运行(优先级低,
// 程序结束timer也自动结束),注意,javax.swing
// 包中也有一个Timer类,如果import中用到swing包,
// 要注意名字的冲突。
TimerTask task = new
- Spring Security(13)——session管理
234390216
sessionSpring Security攻击保护超时
session管理
目录
1.1 检测session超时
1.2 concurrency-control
1.3 session 固定攻击保护
 
- 公司项目NODEJS实践0.3[ mongo / session ...]
逐行分析JS源代码
mongodbsessionnodejs
http://www.upopen.cn
一、前言
书接上回,我们搭建了WEB服务端路由、模板等功能,完成了register 通过ajax与后端的通信,今天主要完成数据与mongodb的存取,实现注册 / 登录 /
- pojo.vo.po.domain区别
LiaoJuncai
javaVOPOJOjavabeandomain
POJO = "Plain Old Java Object",是MartinFowler等发明的一个术语,用来表示普通的Java对象,不是JavaBean, EntityBean 或者 SessionBean。POJO不但当任何特殊的角色,也不实现任何特殊的Java框架的接口如,EJB, JDBC等等。
即POJO是一个简单的普通的Java对象,它包含业务逻辑
- Windows Error Code
OhMyCC
windows
0 操作成功完成.
1 功能错误.
2 系统找不到指定的文件.
3 系统找不到指定的路径.
4 系统无法打开文件.
5 拒绝访问.
6 句柄无效.
7 存储控制块被损坏.
8 存储空间不足, 无法处理此命令.
9 存储控制块地址无效.
10 环境错误.
11 试图加载格式错误的程序.
12 访问码无效.
13 数据无效.
14 存储器不足, 无法完成此操作.
15 系
- 在storm集群环境下发布Topology
roadrunners
集群stormtopologyspoutbolt
storm的topology设计和开发就略过了。本章主要来说说如何在storm的集群环境中,通过storm的管理命令来发布和管理集群中的topology。
1、打包
打包插件是使用maven提供的maven-shade-plugin,详细见maven-shade-plugin。
<plugin>
<groupId>org.apache.maven.
- 为什么不允许代码里出现“魔数”
tomcat_oracle
java
在一个新项目中,我最先做的事情之一,就是建立使用诸如Checkstyle和Findbugs之类工具的准则。目的是制定一些代码规范,以及避免通过静态代码分析就能够检测到的bug。 迟早会有人给出案例说这样太离谱了。其中的一个案例是Checkstyle的魔数检查。它会对任何没有定义常量就使用的数字字面量给出警告,除了-1、0、1和2。 很多开发者在这个检查方面都有问题,这可以从结果
- zoj 3511 Cake Robbery(线段树)
阿尔萨斯
线段树
题目链接:zoj 3511 Cake Robbery
题目大意:就是有一个N边形的蛋糕,切M刀,从中挑选一块边数最多的,保证没有两条边重叠。
解题思路:有多少个顶点即为有多少条边,所以直接按照切刀切掉点的个数排序,然后用线段树维护剩下的还有哪些点。
#include <cstdio>
#include <cstring>
#include <vector&