高数 07.11 多元函数微分学习题03A二重积分

二重积分
一、考试内容:
1.二重积分的概念与性质
2.二重积分的计算法
二考试要求:
1.了解二重积分的概念和性质
2.掌握在直角坐标系下计算二重积分的方法,会交换积分次序
3.会利用极坐标计算二重积分
三、基本知识
1.二重积分的概念和性质
2.直角坐标系下计算二重积分的方法,会交换积分次序
3.极坐标计算二重积分
4.二重积分的对称性

计算二重积分的口诀:
先画积分域
域内画条线
先交为下限
后交为上限
若是不易积
换序是关键
两方同出现
极坐标简便

四、例题分析
(一)单项选择题
1.z=f(x,y),z=g(x,y)D,Dz=f(x,y),z=g(x,y)(  C  )
A.D(f(x,y)g(x,y))dσB.D(|f(x,y)||g(x,y)|)dσC.D|f(x,y)g(x,y)|dσD.|D(f(x,y)g(x,y))dσ|
:Df(x,y)>g(x,y),f(x,y)<g(x,y),C

2.0x1,1y1dxdy=(  C  )
A.1B.1C.2D2
0x1,1y1dxdy=10dx11dy=102dx=2

3.10dx1x0f(x,y)dy(  D  )
A.10dy10f(x,y)dxB.10dy1x0f(x,y)dxC.1x0dy10f(x,y)dxD.10dy1y0f(x,y)dx
:0x1,0y1x;0y1,0x1y

4.I1=Dxy2dxdy,I2=Dx2y2dxdy,I3=D(x2+y2)dxdy,Dx2+y2=1,(  A  )
A.I1I2I3B.I3I1I2C.I2I3I1D.I3I2I1
:x2+y2=1Dxy2,I1=0I2=2π0dθ10r4sin2θcos2θrdr=162π0sin2θcos2θdθ162π0dθ=π3I3=2π0dθ10r2rdr=142π0dθ=π2I1=0I2I3:x2+y21,x2y2x2x2+y2I2I3I1I2I3

(二)填空题
5.I=10dxxxf(x,y)dy=  10dyyy2f(x,y)dx  
: 0x1,xyx线y=x,x=y20y1,y2xyI=10dyyy2f(x,y)dx

6.1x1,2y2,D(x3+2y)dxdy=  0  
:D(x3+2y)dxdy=11dx22(x3+2y)dy=11[x3y+y2]22dx=114x3dx=[x4]11=02:I=D(x3+2y)dxdy=Dx3dxdy+D2ydxdyD,x3,2y,I=0

7.D0xa,0yax(a>0),Ddxdy=8,a=  223  
:SD=12aa2=8a=223

(三)解答题
8.Dxy2dxdy,D线y=x,x=1x.
:0x1,0yxDxy2dxdy=10dxx0xy2dy=10[13xy3]x0dx=1013x4dx=[115x5]10=115

9.Dx2y2dxdy,D线x=2,y=x,线xy=1.
:1x2,1xyxDx2y2dxdy=21dxx1xx2y2dy=21[x2y]x1xdx=21(x3x)dx=[14x412x2]21=94

10.Dcos(x+y)dxdy,D线x=0,y=x,y=π.
:0xπ,xyπDcos(x+y)dxdy=π0dxπxcos(x+y)dy=π0[sin(x+y)]πxdx=π0[sin(x+π)sin2x]dx=π0[sin(x)sin2x]dx=[cos(x)+12cos2x]π0=2

11.Dy2exydxdy,D线y=x,yy=1.
:0y1,0xyDy2exydxdy=10dyy0y2exydx=10[yexy]y0dy=10[yey2y]dy=[12ey212y2]10=e21

12.Dydxdy,D线x=0,x=1,y=x线y=ex
:0x1,xyexDydxdy=10dxexxydy=10[12y2]exxdx=10(12e2x12x2)dx=[14e2x16x3]10=e24512

13.Dy=x,y=x+12,y=12,y=32,D(x2+y2)dσ
:12y32,y12xy,D(x2+y2)dσ=3212dyyy12(x2+y2)dx=3212[13x3+y2x]yy12dy=3212[13y3+y2y13(y12)3y2(y12)]dy=3212[y214y+124]dy=[13y318y2+124y]3212=121144

14.D(x2+y2)dxdy,D线y=x2线x=1,y=0
:0x1,0yx2,D(x2+y2)dxdy=10dxx20(x2+y2)dy=10[x2y+13y3]x20dx=10(x4+13x6)dx=[15x5+121x7]10=26105

15.Df(x,y)dxdy,D线x+y=1,xy=1,x=0
:X0x1,x1y1xDf(x,y)dxdy=10dx1xx1f(x,y)dyY:D1:1y0,0xy+1;D2:0y1,0x1y;Df(x,y)dxdy=01dyy+10f(x,y)dx+10dy1y0f(x,y)dx

16.I=D(2yx2)dxdy,D线2y2=x线x+2y=4.
:x=2y2,x=42y:(8,2),(2,1)Y:2y1,2y2x42y;I=D(2yx2)dxdy=12dy42y2y2(2yx2)dx=12[2xyxx24]42y2y2dy=12(44y3y2+2y3+y4)dy=[4y2y2y3+12y4+15y5]12=8110

17.D(1x2y2)dxdy,Dy=x,y=0,x2+y2=1.
:使,D:0θπ4,0r1;D(1x2y2)dxdy=D[1(rcosθ)2(rsinθ)2]rdrdθ=π40dθ10(rr3)dr=π40[12r214r4]10dθ=π4014dθ=[14θ]π40=π16

18.Dx2+y2dxdy,Dx2+y2=2y.
:D:0θπ,0r2sinθ;Dx2+y2dxdy=π0dθ2sinθ0(rcosθ)2+rsinθ)2rdr=π0dθ2sinθ0r2dr=π0[13r3]2sinθ0dθ=π08sin3θ3dθ=83π0(cos2θ1)dcosθ=83[13cos3θcosθ]π0=329

19.Dxdxdy,D线y=xx2+(y1)2=1,线y=x.
:D:0θπ4,0r2sinθ;Dxdxdy=π40dθ2sinθ0rcosθrdr=π40[13cosθr3]2sinθ0dθ=π4083cosθsin3θdθ=π4083sin3θdsinθ=[23sin4θ]π40=16

20.D:x2+y2a2(a>0),a使De(x2+y2)dxdy=π2
:D:0θ2π,0ra;De(x2+y2)dxdy=2π0dθa0e[(rcosθ)2+(rsinθ)2]rdr=2π0dθa0er2rdr=2π0[12er2]a0dθ=2π0[1212ea2]dθ=[(1212ea2)θ]2π0=(1212ea2)(2π0)=(1ea2)π=π2ea2=12a2=ln2a=ln2

21.π2x2+y24π2sinx2+y2dxdy
:D:0θ2π,πr2π;π2x2+y24π2sinx2+y2dxdy=2π0dθ2ππsin(rcosθ)2+(rsinθ)2)

你可能感兴趣的:(高数,高数)