- 脑电分析入门指南:信号处理、特征提取与机器学习
Ao000000
信号处理机器学习人工智能
脑电分析入门指南一、为什么要研究脑电1.课题目标(解决什么问题)2.输入与输出二、脑电分析的整体流程三、每一步详解1.数据采集2.预处理3.特征提取4.特征选择/降维5.分类与识别四、研究过程中遇到的挑战与解决方法五、学习感受一、为什么要研究脑电1.课题目标(解决什么问题)本课题旨在通过对脑电(EEG)的采集与分析,提取有用的神经信息,实现对某类脑状或行为的识别/预测/评估。例如:情绪识别、疾病诊
- Matlab实现特征选择算法中Relief-F算法
guygg88
大数据
特征选择算法中Relief-F算法使用Matlab的实现GetRandSamples.m,1719ReliefF.m,1034Untitled.m,1238data.txt,23637dataregress.m,210
- 【机器学习笔记 Ⅲ】4 特征选择
巴伦是只猫
机器学习机器学习笔记人工智能
特征选择(FeatureSelection)系统指南特征选择是机器学习中优化模型性能的关键步骤,通过筛选最相关、信息量最大的特征,提高模型精度、降低过拟合风险并加速训练。以下是完整的特征选择方法论:1.特征选择的核心目标提升模型性能:去除噪声和冗余特征,增强泛化能力。降低计算成本:减少训练和预测时间。增强可解释性:简化模型,便于业务理解。2.特征选择方法分类(1)过滤法(FilterMethods
- Mint密室 · 猫猫狐狐的“特征选择”囚室逃脱
Gyoku Mint
猫猫狐狐的小世界人工智能AI修炼日记人工智能深度学习python算法transformer
摘要:这一篇是猫猫狐狐被锁进“特征选择”密室的一场逃生剧本,用冒险叙事把Filter、Wrapper、Embedded三大特征选择法串进情节,轻松解释维度诅咒和特征冗余,还留了一个“尾巴带特征”的彩蛋,稳稳贴你3000字不溢锅。【开场·她们被困在特征选择密室】猫猫醒来的时候,整条尾巴都绕在自己脚边,还带着点抖:“狐狐……咱好像,被锁住了喵……”狐狐睁开眼,四周墙面刻满了灰白色的标签——Featur
- 【机器学习|学习笔记】特征选择(Feature Selection)和特征提取(Feature Extraction)都是用于降维、提升模型性能和泛化能力的重要手段。
努力毕业的小土博^_^
机器学习学习笔记机器学习学习笔记人工智能神经网络
【机器学习|学习笔记】特征选择(FeatureSelection)和特征提取(FeatureExtraction)都是用于降维、提升模型性能和泛化能力的重要手段。【机器学习|学习笔记】特征选择(FeatureSelection)和特征提取(FeatureExtraction)都是用于降维、提升模型性能和泛化能力的重要手段。文章目录【机器学习|学习笔记】特征选择(FeatureSelection)和
- 机器学习笔记:MATLAB实践
techDM
机器学习笔记matlabMatlab
在机器学习领域,MATLAB是一种功能强大且广泛使用的工具,它提供了许多内置函数和工具箱,方便开发者进行各种机器学习任务。本文将介绍一些常见的机器学习任务,并提供相应的MATLAB源代码示例。数据预处理在进行机器学习之前,通常需要对原始数据进行预处理。这包括数据清洗、特征选择、特征缩放和数据划分等步骤。%导入数据data=readmatrix('data.csv');%数据清洗cleaned_da
- 《dlib库中的聚类》算法详解:从原理到实践
A小庞
算法算法聚类数据挖掘机器学习c++
一、dlib库与聚类算法的关联1.1dlib库的核心功能dlib是一个基于C++的机器学习和计算机视觉工具库,其聚类算法模块提供了多种高效的无监督学习工具。聚类算法在dlib中主要用于:数据分组:将相似的数据点划分为同一簇。特征分析:通过聚类结果发现数据潜在的结构。降维辅助:结合聚类结果进行特征选择或数据压缩。dlib支持的经典聚类算法包括K-Means和ChineseWhispers,适用于图像
- 22种创新思路!今年必将是特征选择爆发的一年
小唯啊小唯
人工智能注意力机制特征选择
2025深度学习发论文&模型涨点之——特征选择特征选择是机器学习和数据挖掘领域中一个非常重要的步骤。它指的是从原始特征集合中挑选出对目标变量有较强预测能力的特征子集。在实际的数据集中,往往包含众多特征,但并非所有特征都对模型的性能有正面影响。例如在房价预测任务中,原始特征可能包括房屋的面积、房间数量、所在小区、周边配套设施等众多内容。通过特征选择,可以剔除一些无关的或者冗余的特征,比如可能存在的重
- “相关分析”
不解风情的老妖怪哎
数据分析学习笔记数据分析大数据
一、相关分析的核心概念1.定义(1)衡量两个或多个变量之间的线性或单调关系的强度和方向(正/负相关)。(2)注意:相关性≠因果关系。2.相关系数的范围(1)取值范围为[-1,1]:1:完全正相关-1:完全负相关0:无线性相关3.应用场景(1)探索变量间的潜在关系(如收入与消费水平、广告投入与销售额)。(2)辅助特征选择(如剔除高度相关的变量,避免多重共线性)。二、常用相关系数及方法1.Pearso
- 决策树算法
雨巷码行人
机器学习算法决策树机器学习
文章目录基本概念与原理决策树定义两种理解视角模型构建三要素1.特征选择(1)信息增益(ID3算法)(2)信息增益比(C4.5算法)(3)基尼指数(CART算法)2.决策树生成3.决策树剪枝(1)预剪枝(Pre-pruning)(2)后剪枝(Post-pruning)决策树算法对比CART回归树生成Scikit-learn实现分类树CART决策树-回归树决策树优劣势总结基本概念与原理决策树定义树形结
- 解锁决策树:数据挖掘的智慧引擎
目录一、决策树:数据挖掘的基石二、决策树原理剖析2.1决策树的基本结构2.2决策树的构建流程2.2.1特征选择2.2.2数据集划分2.2.3递归构建三、决策树的实践应用3.1数据准备3.2模型构建与训练3.3模型评估四、决策树的优化策略4.1剪枝策略4.1.1预剪枝4.1.2后剪枝4.2集成学习五、案例分析5.1医疗诊断案例5.2金融风险评估案例六、总结与展望一、决策树:数据挖掘的基石在当今数字化
- 无监督学习中的特征选择与检测(FSD)在医疗动线流程优化中的应用
Allen_Lyb
医疗高效编程研发学习健康医疗架构人工智能
无监督学习中的特征选择与检测(FeatureSelectionandDetection,FSD)算法在医疗动线流程优化中具有重要的应用价值,尤其适用于从海量、复杂且缺乏明确标签的医疗行为数据中自动挖掘关键模式和瓶颈。以下是如何编程实现这种应用的思路和步骤:引言医疗动线流程优化是提升医疗机构运营效率、改善患者体验的关键领域。传统的流程优化方法往往依赖于人工观察和经验分析,难以从海量、复杂且缺乏明确标
- 机器学习与深度学习22-数据预处理
my_q
机器学习与深度学习机器学习深度学习人工智能
目录前文回顾1.常见的数据质量问题2.归一化和标准化3.特征选择和特征提取4.独热编码前文回顾上一篇文章地址:链接1.常见的数据质量问题在数据预处理过程中,常见的数据质量问题包括缺失值、异常值和重复数据。以下是这些问题的详细描述以及处理方法:缺失值:缺失值是指数据表中某些单元格或字段缺乏数值或信息的情况处理方法:删除包含缺失值的行:如果缺失值数量较少,可以考虑删除包含缺失值的行,但这可能导致信息损
- 机器学习中的数据预处理:清洗、转换与标准化
CarlowZJ
AI+大模型微调机器学习人工智能
目录一、前言二、数据预处理的基本概念(一)数据预处理的定义(二)数据预处理的重要性三、数据预处理的常用方法(一)数据清洗(二)特征选择(三)特征转换(四)数据标准化四、数据预处理的代码示例(一)环境准备(二)数据加载与清洗(三)特征标准化(四)特征选择五、数据预处理的应用场景(一)分类任务(二)回归任务(三)时间序列预测六、数据预处理的注意事项(一)数据质量(二)特征选择方法的选择(三)标准化方法
- 机器学习中常见搜索算法
机器学习中的搜索算法主要用于优化模型参数、特征选择、超参数调优或近似最近邻搜索等任务。常见的搜索算法分类及典型方法如下1.参数/超参数搜索算法(1)网格搜索(GridSearch)原理:遍历所有可能的参数组合,选择最优解。优点:简单、全局最优。缺点:计算成本高,维数灾难。工具:sklearn.model_selection.GridSearchCVfromsklearn.model_selecti
- 数据清洗——利用机器学习方法进行健康智能诊断
丢不掉的喜欢
机器学习人工智能
1.数据预处理与质量控制:目的:确保数据的完整性和准确性,为后续的分析和建模提供可靠的基础。具体操作:通过识别并填补缺失值,解决数据不完整的问题,减少因数据缺失导致的偏差。2.探索性数据分析(EDA):目的:理解数据的分布特性、趋势以及不同特征之间的关系,为后续建模提供洞察。具体操作:通过分组对比不同年龄、性别的人群中患病占比,揭示潜在的患病风险因素,为模型特征选择提供依据。3.分类建模与评估:目
- 打卡第二十天
Shining_Jiang
机器学习人工智能
方差筛选方差筛选是一种基于特征方差的特征选择方法。通过计算每个特征的方差,剔除方差较小的特征,因为这些特征对模型的贡献较小。皮尔逊相关系数筛选皮尔逊相关系数用于衡量特征与目标变量之间的线性相关性。通过计算每个特征与目标变量的相关系数,选择相关性较高的特征。Lasso筛选Lasso回归是一种带有L1正则化的线性回归方法,能够通过正则化系数将某些特征的权重压缩为零,从而实现特征选择。树模型重要性树模型
- Python实战笔记-常用知识点
MMGNFT
K总编程笔记
一、自学Python的最终的目标是a,实现自动化办公b,实现数据的爬取c,实现基本的数据分析(SEMMA)S:Sample(收集数据)常用手段:问卷调查,数据库查询,实验室实验,仪器设备的记录E:Explore(数据探索)探索方向:离散变量的分布比例,连续变量的分布形态,数据的异常和缺失,特征选择M:Modify(数据修正)常用修正方法:数据类型的转换,数据的一致性处理,异常值和缺失值的处理,数据
- 决策树-机器学习
ma_ant
机器学习算法决策树机器学习
一.决策树简介1.什么是决策树决策树是一种树形结构,树中每个内部节点表示一个特征上的判断,每个分支代表一个判断结果的输出,每个叶子节点代表一种分类结果。它主要用于分类和回归任务,通过递归地分裂数据集构建树状结构。2.决策树构建过程(三要素)①特征选择:选择较强分类能力的特征②决策树的生成:根据选择的特征生成决策树③决策树的剪枝:决策树也容易过拟合,采用剪枝的方法缓解过拟合3.优缺点及应用优点:可解
- 特征分析工程化
梨V_v
文献深度学习人工智能神经网络笔记
scikit功能Python中的特征选择存储库scikit-feature。scikit-feature是一个开源的Python特征选择库,由亚利桑那州立大学数据挖掘与机器学习实验室开发。它基于一个广泛使用的机器学习包scikit-learn以及两个科学计算包Numpy和Scipy构建。scikit-feature包含大约40种流行的特征选择算法,包括传统的特征选择算法以及一些结构化和流式特征选择
- 机器学习回归预测中预处理的特征工程
Studying 开龙wu
机器学习理论(分类回归)机器学习回归人工智能
1.项目目标和数据分析2.数据预处理3.特征构造与生成4.特征选择5.时间序列回归预测-——引用风速预测案列简单说明 在机器学习回归预测中,特征工程是至关重要的环节,它能显著提升模型的性能和预测准确性。这里从一个项目开始分析到最终确定特征的思考,本文章先主要理论说明,后续会对每一个方法和用法进行单独说明和代码示例。说明的涉及领域比较多,方法都可以用代码实现。一、项目目标和数据分析1.明确业务目标
- 自然语言处理学习路线
熬夜造bug
自然语言处理(NLP)自然语言处理学习人工智能python
学习目标NLP系统知识(从入门到入土)学习内容NLP的基本流程:自然语言处理学习路线(1)——NLP的基本流程-CSDN博客语料预处理:(待更)特征工程之向量化(word——>vector):(待更)特征工程之特征选择:(待更)序列网络在NLP领域的应用(RNN、GRU、LSTM):(待更)预训练模型(ELMO、Bert、T5、GPT、Transformer):(待更)文本分类(Fasttext、
- 基于线性回归的数据预测
所见即所得11111
线性回归算法回归
1.自主选择一个公开回归任务数据集(如房价预测、医疗数据、空气质量预测等,可Kaggle)。2.数据预处理:完成标准化(Normalization)、特征选择或缺失值处理等步骤。3.使用线性回归模型进行建模。采用80%数据用于训练,20%用于测试,重复划分数据集并训练模型20次,记录每次结果(交叉验证)。4.输出平均均方误差(MSE)或平均绝对误差(MAE),并可选与其他模型(如决策树回归、岭回归
- sklearn基础教程:从入门到精通
洛秋_
机器学习
文章目录sklearn基础教程:从入门到精通一、sklearn简介二、安装与配置三、数据预处理数据导入数据清洗特征选择数据标准化与归一化四、常用模型介绍与应用线性回归逻辑回归决策树支持向量机K近邻算法随机森林集成学习五、模型评估与调优交叉验证网格搜索模型评估指标六、实战案例波士顿房价预测手写数字识别客户流失预测七、测试接口与详细解释单元测试接口测试八、总结个人博客【洛秋小站】洛秋资源小站【洛秋资源
- 机器学习笔记——特征工程
好评笔记
机器学习人工智能深度学习AIGC算法岗校招实习
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本笔记介绍机器学习中常见的特征工程方法、正则化方法和简要介绍强化学习。文章目录特征工程(FzeatureEngineering)1.特征提取(FeatureExtraction)手工特征提取(ManualFeatureExtraction):自动特征提取(AutomatedFeatureExtraction):2.特征选择
- 机器学习第十二讲:特征选择 → 选最重要的考试科目做录取判断
机器学习第十二讲:特征选择→选最重要的考试科目做录取判断资料取自《零基础学机器学习》。查看总目录:学习大纲关于DeepSeek本地部署指南可以看下我之前写的文章:DeepSeekR1本地与线上满血版部署:超详细手把手指南一、学霸选科法则(特征选择基础逻辑,材料2的3.章节[2-3]比喻:某大学要从200科成绩中选出关键指标:graphTDA[全科成绩]-->B{"数学/语文超强相关性"}A-->C
- 第二十三天打卡
不爱吃山楂罐头
python打卡python
作业:整理下全部逻辑的先后顺序,看看能不能制作出适合所有机器学习的通用pipeline数据预处理→特征选择→降维→模型训练importpandasaspdimportnumpyasnpfromsklearn.model_selectionimporttrain_test_split,GridSearchCVfromsklearn.composeimportColumnTransformerfrom
- 连续变量与离散变量的互信息法
从零开始学习人工智能
机器学习
1.互信息法简介互信息(MutualInformation,MI)是一种衡量两个变量之间相互依赖程度的统计量,它来源于信息论。互信息可以用于评估特征与目标变量之间的相关性,无论这些变量是连续的还是离散的。互信息法是一种强大的特征选择方法,尤其适用于处理复杂的特征与目标变量之间的非线性关系。互信息的基本思想是:如果两个变量之间存在某种依赖关系,那么知道其中一个变量的值可以减少对另一个变量的不确定性。
- 2025年深圳杯-东三省联赛D题参考论文发布!
BZD数模社
数学建模
2025深圳杯-东三省D题两版本区别BZD数模社名称D题第一版D题第二版基本信息使用语言matlabpython文章篇幅60页3.4万字45页2.5万字问题一模型决策树、随机森林、KNN、(SVM)、逻辑回归神经网络、集成模型、XGBoost层感知器、随机森林、LightGBM和梯度提升精度准确率:0.7500最高准确率96.57%特点特征选择、超参数优化、类别不平衡处理和集成学高精度BZD数模社
- 线性回归算法解密:从基础到实战的完整指南
智能计算研究中心
其他
内容概要线性回归算法是统计学与机器学习中一种常用的预测方法,它的核心思想是通过学习输入特征与输出变量之间的关系,以便对未来的数据进行预测。本文将从线性回归的基本概念入手,逐步深入,帮助读者全面掌握这一算法。本文旨在为读者提供系统而清晰的线性回归知识框架,以便在实际应用中能够灵活运用。首先,我们将解释线性回归的数学原理,包括如何构建模型以及利用最小二乘法进行参数估计。接着,针对数据预处理与特征选择,
- 解线性方程组
qiuwanchi
package gaodai.matrix;
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
public class Test {
public static void main(String[] args) {
Scanner scanner = new Sc
- 在mysql内部存储代码
annan211
性能mysql存储过程触发器
在mysql内部存储代码
在mysql内部存储代码,既有优点也有缺点,而且有人倡导有人反对。
先看优点:
1 她在服务器内部执行,离数据最近,另外在服务器上执行还可以节省带宽和网络延迟。
2 这是一种代码重用。可以方便的统一业务规则,保证某些行为的一致性,所以也可以提供一定的安全性。
3 可以简化代码的维护和版本更新。
4 可以帮助提升安全,比如提供更细
- Android使用Asynchronous Http Client完成登录保存cookie的问题
hotsunshine
android
Asynchronous Http Client是android中非常好的异步请求工具
除了异步之外还有很多封装比如json的处理,cookie的处理
引用
Persistent Cookie Storage with PersistentCookieStore
This library also includes a PersistentCookieStore whi
- java面试题
Array_06
java面试
java面试题
第一,谈谈final, finally, finalize的区别。
final-修饰符(关键字)如果一个类被声明为final,意味着它不能再派生出新的子类,不能作为父类被继承。因此一个类不能既被声明为 abstract的,又被声明为final的。将变量或方法声明为final,可以保证它们在使用中不被改变。被声明为final的变量必须在声明时给定初值,而在以后的引用中只能
- 网站加速
oloz
网站加速
前序:本人菜鸟,此文研究总结来源于互联网上的资料,大牛请勿喷!本人虚心学习,多指教.
1、减小网页体积的大小,尽量采用div+css模式,尽量避免复杂的页面结构,能简约就简约。
2、采用Gzip对网页进行压缩;
GZIP最早由Jean-loup Gailly和Mark Adler创建,用于UNⅨ系统的文件压缩。我们在Linux中经常会用到后缀为.gz
- 正确书写单例模式
随意而生
java 设计模式 单例
单例模式算是设计模式中最容易理解,也是最容易手写代码的模式了吧。但是其中的坑却不少,所以也常作为面试题来考。本文主要对几种单例写法的整理,并分析其优缺点。很多都是一些老生常谈的问题,但如果你不知道如何创建一个线程安全的单例,不知道什么是双检锁,那这篇文章可能会帮助到你。
懒汉式,线程不安全
当被问到要实现一个单例模式时,很多人的第一反应是写出如下的代码,包括教科书上也是这样
- 单例模式
香水浓
java
懒汉 调用getInstance方法时实例化
public class Singleton {
private static Singleton instance;
private Singleton() {}
public static synchronized Singleton getInstance() {
if(null == ins
- 安装Apache问题:系统找不到指定的文件 No installed service named "Apache2"
AdyZhang
apachehttp server
安装Apache问题:系统找不到指定的文件 No installed service named "Apache2"
每次到这一步都很小心防它的端口冲突问题,结果,特意留出来的80端口就是不能用,烦。
解决方法确保几处:
1、停止IIS启动
2、把端口80改成其它 (譬如90,800,,,什么数字都好)
3、防火墙(关掉试试)
在运行处输入 cmd 回车,转到apa
- 如何在android 文件选择器中选择多个图片或者视频?
aijuans
android
我的android app有这样的需求,在进行照片和视频上传的时候,需要一次性的从照片/视频库选择多条进行上传
但是android原生态的sdk中,只能一个一个的进行选择和上传。
我想知道是否有其他的android上传库可以解决这个问题,提供一个多选的功能,可以使checkbox之类的,一次选择多个 处理方法
官方的图片选择器(但是不支持所有版本的androi,只支持API Level
- mysql中查询生日提醒的日期相关的sql
baalwolf
mysql
SELECT sysid,user_name,birthday,listid,userhead_50,CONCAT(YEAR(CURDATE()),DATE_FORMAT(birthday,'-%m-%d')),CURDATE(), dayofyear( CONCAT(YEAR(CURDATE()),DATE_FORMAT(birthday,'-%m-%d')))-dayofyear(
- MongoDB索引文件破坏后导致查询错误的问题
BigBird2012
mongodb
问题描述:
MongoDB在非正常情况下关闭时,可能会导致索引文件破坏,造成数据在更新时没有反映到索引上。
解决方案:
使用脚本,重建MongoDB所有表的索引。
var names = db.getCollectionNames();
for( var i in names ){
var name = names[i];
print(name);
- Javascript Promise
bijian1013
JavaScriptPromise
Parse JavaScript SDK现在提供了支持大多数异步方法的兼容jquery的Promises模式,那么这意味着什么呢,读完下文你就了解了。
一.认识Promises
“Promises”代表着在javascript程序里下一个伟大的范式,但是理解他们为什么如此伟大不是件简
- [Zookeeper学习笔记九]Zookeeper源代码分析之Zookeeper构造过程
bit1129
zookeeper
Zookeeper重载了几个构造函数,其中构造者可以提供参数最多,可定制性最多的构造函数是
public ZooKeeper(String connectString, int sessionTimeout, Watcher watcher, long sessionId, byte[] sessionPasswd, boolea
- 【Java命令三】jstack
bit1129
jstack
jstack是用于获得当前运行的Java程序所有的线程的运行情况(thread dump),不同于jmap用于获得memory dump
[hadoop@hadoop sbin]$ jstack
Usage:
jstack [-l] <pid>
(to connect to running process)
jstack -F
- jboss 5.1启停脚本 动静分离部署
ronin47
以前启动jboss,往各种xml配置文件,现只要运行一句脚本即可。start nohup sh /**/run.sh -c servicename -b ip -g clustername -u broatcast jboss.messaging.ServerPeerID=int -Djboss.service.binding.set=p
- UI之如何打磨设计能力?
brotherlamp
UIui教程ui自学ui资料ui视频
在越来越拥挤的初创企业世界里,视觉设计的重要性往往可以与杀手级用户体验比肩。在许多情况下,尤其对于 Web 初创企业而言,这两者都是不可或缺的。前不久我们在《右脑革命:别学编程了,学艺术吧》中也曾发出过重视设计的呼吁。如何才能提高初创企业的设计能力呢?以下是 9 位创始人的体会。
1.找到自己的方式
如果你是设计师,要想提高技能可以去设计博客和展示好设计的网站如D-lists或
- 三色旗算法
bylijinnan
java算法
import java.util.Arrays;
/**
问题:
假设有一条绳子,上面有红、白、蓝三种颜色的旗子,起初绳子上的旗子颜色并没有顺序,
您希望将之分类,并排列为蓝、白、红的顺序,要如何移动次数才会最少,注意您只能在绳
子上进行这个动作,而且一次只能调换两个旗子。
网上的解法大多类似:
在一条绳子上移动,在程式中也就意味只能使用一个阵列,而不使用其它的阵列来
- 警告:No configuration found for the specified action: \'s
chiangfai
configuration
1.index.jsp页面form标签未指定namespace属性。
<!--index.jsp代码-->
<%@taglib prefix="s" uri="/struts-tags"%>
...
<s:form action="submit" method="post"&g
- redis -- hash_max_zipmap_entries设置过大有问题
chenchao051
redishash
使用redis时为了使用hash追求更高的内存使用率,我们一般都用hash结构,并且有时候会把hash_max_zipmap_entries这个值设置的很大,很多资料也推荐设置到1000,默认设置为了512,但是这里有个坑
#define ZIPMAP_BIGLEN 254
#define ZIPMAP_END 255
/* Return th
- select into outfile access deny问题
daizj
mysqltxt导出数据到文件
本文转自:http://hatemysql.com/2010/06/29/select-into-outfile-access-deny%E9%97%AE%E9%A2%98/
为应用建立了rnd的帐号,专门为他们查询线上数据库用的,当然,只有他们上了生产网络以后才能连上数据库,安全方面我们还是很注意的,呵呵。
授权的语句如下:
grant select on armory.* to rn
- phpexcel导出excel表简单入门示例
dcj3sjt126com
PHPExcelphpexcel
<?php
error_reporting(E_ALL);
ini_set('display_errors', TRUE);
ini_set('display_startup_errors', TRUE);
if (PHP_SAPI == 'cli')
die('This example should only be run from a Web Brows
- 美国电影超短200句
dcj3sjt126com
电影
1. I see. 我明白了。2. I quit! 我不干了!3. Let go! 放手!4. Me too. 我也是。5. My god! 天哪!6. No way! 不行!7. Come on. 来吧(赶快)8. Hold on. 等一等。9. I agree。 我同意。10. Not bad. 还不错。11. Not yet. 还没。12. See you. 再见。13. Shut up!
- Java访问远程服务
dyy_gusi
httpclientwebservicegetpost
随着webService的崛起,我们开始中会越来越多的使用到访问远程webService服务。当然对于不同的webService框架一般都有自己的client包供使用,但是如果使用webService框架自己的client包,那么必然需要在自己的代码中引入它的包,如果同时调运了多个不同框架的webService,那么就需要同时引入多个不同的clien
- Maven的settings.xml配置
geeksun
settings.xml
settings.xml是Maven的配置文件,下面解释一下其中的配置含义:
settings.xml存在于两个地方:
1.安装的地方:$M2_HOME/conf/settings.xml
2.用户的目录:${user.home}/.m2/settings.xml
前者又被叫做全局配置,后者被称为用户配置。如果两者都存在,它们的内容将被合并,并且用户范围的settings.xml优先。
- ubuntu的init与系统服务设置
hongtoushizi
ubuntu
转载自:
http://iysm.net/?p=178 init
Init是位于/sbin/init的一个程序,它是在linux下,在系统启动过程中,初始化所有的设备驱动程序和数据结构等之后,由内核启动的一个用户级程序,并由此init程序进而完成系统的启动过程。
ubuntu与传统的linux略有不同,使用upstart完成系统的启动,但表面上仍维持init程序的形式。
运行
- 跟我学Nginx+Lua开发目录贴
jinnianshilongnian
nginxlua
使用Nginx+Lua开发近一年的时间,学习和实践了一些Nginx+Lua开发的架构,为了让更多人使用Nginx+Lua架构开发,利用春节期间总结了一份基本的学习教程,希望对大家有用。也欢迎谈探讨学习一些经验。
目录
第一章 安装Nginx+Lua开发环境
第二章 Nginx+Lua开发入门
第三章 Redis/SSDB+Twemproxy安装与使用
第四章 L
- php位运算符注意事项
home198979
位运算PHP&
$a = $b = $c = 0;
$a & $b = 1;
$b | $c = 1
问a,b,c最终为多少?
当看到这题时,我犯了一个低级错误,误 以为位运算符会改变变量的值。所以得出结果是1 1 0
但是位运算符是不会改变变量的值的,例如:
$a=1;$b=2;
$a&$b;
这样a,b的值不会有任何改变
- Linux shell数组建立和使用技巧
pda158
linux
1.数组定义 [chengmo@centos5 ~]$ a=(1 2 3 4 5) [chengmo@centos5 ~]$ echo $a 1 一对括号表示是数组,数组元素用“空格”符号分割开。
2.数组读取与赋值 得到长度: [chengmo@centos5 ~]$ echo ${#a[@]} 5 用${#数组名[@或
- hotspot源码(JDK7)
ol_beta
javaHotSpotjvm
源码结构图,方便理解:
├─agent Serviceab
- Oracle基本事务和ForAll执行批量DML练习
vipbooks
oraclesql
基本事务的使用:
从账户一的余额中转100到账户二的余额中去,如果账户二不存在或账户一中的余额不足100则整笔交易回滚
select * from account;
-- 创建一张账户表
create table account(
-- 账户ID
id number(3) not null,
-- 账户名称
nam