- MATLAB 代码的主要功能是基于功能连接(FC)数据,利用支持向量机(SVM)进行分类,并通过留一法交叉验证、特征选择、超参数寻优、一致性特征分析以及置换检验等步骤,评估分类性能和特征的显著性
max500600
MATLAB开发语言算法matlab支持向量机分类
clear;clcNumROI=37;%ROI数目NumCon=605;%连接数目%选择病人组数据文件夹%path1=spm_select(1,'dir','pleaseselectpatientsdir');path1='D:\siying\42ML_day3\nnnnnn\FC\Patient';%和第7行用一个即可,为手动改路径file1=dir([path1,filesep,'*.txt'
- R语言机器学习算法实战系列(十九)特征选择之Monte Carlo算法(Monte Carlo Feature Selection)
生信学习者1
R语言机器学习实战r语言机器学习算法数据分析数据挖掘数据可视化人工智能
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者!文章目录介绍原理步骤下载数据加载R包导入数据数据预处理数据分割MCFS运行MCFS-ID过程混淆矩阵重要特征的RI最小阈值距离与共同部分收敛特征重要性排序选择重要特征构建特征依赖图提取重要特征基于重要特征构建随机森林模型混淆矩阵评估模型AUC曲线刻画模型在训练和测试数据集的表现总结系统信息介绍特征选择(FeatureSel
- 机器学习特征重要性之feature_importances_属性与permutation_importance方法
一叶_障目
机器学习python数据挖掘
一、feature_importances_属性在机器学习中,分类和回归算法的feature_importances_属性用于衡量每个特征对模型预测的重要性。这个属性通常在基于树的算法中使用,通过feature_importances_属性,您可以了解哪些特征对模型的预测最为重要,从而可以进行特征选择或特征工程,以提高模型的性能和解释性。1、决策树1.1.sklearn.tree.Decision
- python 特征选择方法_【来点干货】机器学习中常用的特征选择方法及非常详细的Python实例...
Blair Long
python特征选择方法
花费了很长时间整理编辑,转载请联系作者授权,违者必究。特征选择(Featureselection)是在构建预测模型的过程中减少输入变量的一个过程。它是机器学习中非常重要的一步并在很大程度上可以提高模型预测精度。这里我总结了一些机器学习中常见的比较有用的特征选择方法并附上相关python实现code。希望可以给大家一些启发。首先,我们为什么要进行特征选择呢?它有以下几个优点:减少过拟合:冗余数据常常
- ChatGPT4.0最新功能和使用技巧,助力日常生活、学习与工作!
WangYan2022
教程人工智能chatgpt数据分析ai绘画AI写作
熟练掌握ChatGPT4.0在数据分析、自动生成代码等方面的强大功能,系统学习人工智能(包括传统机器学习、深度学习等)的基础理论知识,以及具体的代码实现方法,同时掌握ChatGPT4.0在科研工作中的各种使用方法与技巧,以及人工智能领域经典机器学习算法(BP神经网络、支持向量机、决策树、随机森林、变量降维与特征选择、群优化算法等)和热门深度学习方法(卷积神经网络、迁移学习、RNN与LSTM神经网络
- 机器学习02-发展历史补充
坐吃山猪
机器学习机器学习人工智能
机器学习02-发展历史补充文章目录机器学习02-发展历史补充1-机器学习个人理解1-初始阶段:统计学习和模式识别(20世纪50年代至80年代)2-第二阶段【集成时代】+【核方法】(20世纪90年代至2000年代初期)3-第三阶段【特征工程】+【模型优化】(2000年代中期至2010年代初期)4-大规模数据和分布式计算(2010年代中后期)5-自动化机器学习和特征选择(2010年代末至今)2-神经网
- Python数据分析高频面试题及答案
闲人编程
程序员面试python数据分析面试题核心
目录1.基础知识2.数据处理3.数据可视化4.机器学习模型5.进阶问题6.数据清洗与预处理7.数据转换与操作8.时间序列分析9.高级数据分析技术10.数据降维与特征选择11.模型评估与优化12.数据操作与转换13.数据筛选与分析14.数据可视化与报告15.数据统计与分析16.高级数据处理以下是一些Python数据分析的高频核心面试题及其答案,涵盖了基础知识、数据1.基础知识问1:Python中列表
- 30、基于SelectFromModel和LassoCV的特征选择
凌晨思索
30、基于SelectFromModel和LassoCV的特征选择importmatplotlib.pyplotaspltimportnumpyasnpfromsklearn.datasetsimportload_diabetesfromsklearn.feature_selectionimportSelectFromModelfromsklearn.linear_modelimportLasso
- 深度学习回归任务训练代码模版
槐月初叁
深度学习深度学习回归人工智能
深度学习回归任务训练代码模版文章目录深度学习回归任务训练代码模版参数设置功能函数数据加载自定义数据集加载类特征选择(可选)数据读取定义模型训练模型训练迭代+验证迭代使用`tensorboard`输出模型训练过程和指标可视化(可选)结果预测参考参数设置超参设置:config包含所有训练需要的超参数(便于后续的调参),以及模型需要存储的位置device='cuda'iftorch.cuda.is_av
- Java在智能数据挖掘系统的应用
lizi88888
java数据挖掘开发语言
智能数据挖掘系统是利用机器学习、统计分析等技术从大量数据中自动或半自动地发现模式和知识的系统。Java作为一种流行的编程语言,因其强大的性能和丰富的生态系统,在智能数据挖掘领域的应用非常广泛。本文将探讨Java在智能数据挖掘系统中的应用,并提供示例代码。智能数据挖掘系统概述智能数据挖掘系统通常具备以下功能:数据预处理:包括数据清洗、归一化、特征选择等。模式识别:识别数据中的模式,如分类、聚类、关联
- 机器学习算法 —— LightGBM
ZShiJ
机器学习算法机器学习算法分类
欢迎来到我的博客——探索技术的无限可能!博客的简介(文章目录)目录背景描述数据说明数据来源LightGBMLightGBM原理简介LightGBM的优点LightGBM的缺点LightGBM的应用基于英雄联盟数据集的LightGBM分类实战函数库导入数据读取/载入数据信息简单查看可视化描述利用LightGBM进行训练与预测利用LightGBM进行特征选择通过调整参数获得更好的效果基本参数调整针对训
- 遗传进化算法进行高效特征选择
广东数字化转型
算法人工智能
在构建机器学习模型时,特征选择是一个关键的预处理步骤。使用全部特征往往会导致过拟合、增加计算复杂度等问题。因此,我们需要从原始特征集中选择一个最优子集,以提高模型的泛化性能和效率。特征选择的目标是找到一个二元掩码向量,对应每个特征的保留(1)或剔除(0)。例如,对于10个特征,这个掩码向量可能是[1,0,1,1,0,0,1,0,1,0]。我们需要通过某种优化方法,寻找一个使目标函数(如模型的贝叶斯
- 遥感之智能优化算法大纲介绍
遥感-GIS
遥感之智能优化算法图像处理arcgis启发式算法
介绍近年来在遥感及人工智能领域研究比较火热的智能优化算法,其中被广泛使用的比如粒子群算法和遗传算法等,在遥感领域,比如高光谱特征选择,机器学习超参数优化等方向有众多的应用,除了提到了两个算法之外,还有众多其他算法,本专栏基于《智能优化算法与涌现计算》及其相关资料,对智能优化算法做些详细的整理和总结,以期给遥感或其他领域提供有价值的参考。书籍大纲为:第一篇仿人智能优化算法描述模拟人脑思维、人体系统、
- 智能优化特征选择|基于鹦鹉优化(2024年新出优化算法)的特征选择(分类器选用的是SVM)研究Matlab程序 【优化算法可以替换成其他优化方法】
机器不会学习CL
智能优化算法智能优化特征选择算法支持向量机matlab
智能优化特征选择|基于鹦鹉优化(2024年新出优化算法)的特征选择(分类器选用的是SVM)研究Matlab程序【优化算法可以替换成其他优化方法】文章目录一、PO基本原理基本原理基本流程示例应用二、实验结果三、核心代码四、代码获取五、总结智能优化特征选择|基于鹦鹉优化(2024年新出优化算法)的特征选择(分类器选用的是SVM)研究Matlab程序【优化算法可以替换成其他优化方法】一、PO基本原理鹦鹉
- spark应用程序转换_4.Spark特征提取、转换和选择 - 简书
weixin_39956182
spark应用程序转换
在实际机器学习项目中,我们获取的数据往往是不规范、不一致、有很多缺失数据,甚至不少错误数据,这些数据有时又称为脏数据或噪音,在模型训练前,务必对这些脏数据进行处理,否则,再好的模型,也只能脏数据进,脏数据出。这章我们主要介绍对数据处理涉及的一些操作,主要包括:特征提取特征转换特征选择4.1特征提取特征提取一般指从原始数据中抽取特征。4.1.1词频-逆向文件频率(TF-IDF)词频-逆向文件频率(T
- 代谢组数据分析(十八):随机森林构建代谢组诊断模型
生信学习者2
代谢组分析数据分析随机森林数据挖掘
介绍使用随机森林算法和LASSO特征选择构建了一种胃癌(GC)诊断预测模型。参与者(队列1,n=426)通过随机分层抽样分为发现数据集(n=284)和测试集(n=142)。接下来,在发现数据集上执行LASSO回归,以选择能够识别胃癌患者的较少数量的特征。我们将L1约束的系数设置为0.01,并根据10,000次随机交叉验证的平均误分类误差选择了十个非零系数的特征。在发现数据集上使用引导聚合方法训练了
- AI实现自闭症早筛:卡罗林斯卡学院研究团队开发的多模态数据分析AI模型,能在儿童12个月左右时发现自闭症的早期迹象,准确率超过80%?
百态老人
人工智能团队开发数据分析
卡罗林斯卡学院的研究团队确实开发了一种多模态数据分析AI模型,该模型能够在儿童大约12个月大时发现自闭症的早期迹象,并且准确率超过80%.具体来说,这种AI模型利用了多种数据源和分析方法,包括基础医疗筛查和背景历史信息,依赖家长报告的数据来简化特征选择,从而使得早期筛查更加实用和广泛适用.这种模型不仅在识别12个月左右的儿童中表现出了高准确性,而且对两岁以下儿童的识别准确率也达到了80.5%.因此
- 挑战杯 基于机器学习与大数据的糖尿病预测
laafeer
python
文章目录1前言1课题背景2数据导入处理3数据可视化分析4特征选择4.1通过相关性进行筛选4.2多重共线性4.3RFE(递归特征消除法)4.4正则化5机器学习模型建立与评价5.1评价方式的选择5.2模型的建立与评价5.3模型参数调优5.4将调参过后的模型重新进行训练并与原模型比较6总结1前言优质竞赛项目系列,今天要分享的是基于机器学习与大数据的糖尿病预测该项目较为新颖,适合作为竞赛课题方向,学长非常
- DataCastle 员工离职预测 Baseline
小嗷犬
Python机器学习机器学习数据挖掘sklearn
✅作者简介:人工智能专业本科在读,喜欢计算机与编程,写博客记录自己的学习历程。个人主页:小嗷犬的个人主页个人网站:小嗷犬的技术小站个人信条:为天地立心,为生民立命,为往圣继绝学,为万世开太平。本文目录比赛介绍比赛链接赛题描述评分标准比赛数据数据下载数据说明Baseline导包数据读取数据缺失状况样本标签是否均衡打印类别特征类别特征编码特征衍生数据标准化数据降维特征选择不均衡样本处理模型调参XGBo
- MATLAB进行特征选择
AI Dog
数学建模\MATLABmatlab数学建模数据挖掘特征选择特征提取
特征选择是机器学习和统计建模中的重要步骤,它涉及选择最相关、最有信息价值的特征,以提高模型性能、降低过拟合风险,并加速训练过程。以下是一些常见的特征选择方法:(1)方差选择法计算各个特征的方差,然后根据阈值,选择方差大于阈值的特征作为筛选出来的特征。这里是针对于各个变量独立地进行方差计算,然后按照方差大小对特征进行降序排列,保留前几个方差较大的变量。(2)随机森林特征重要度随机森林由多个决策树构成
- 机器学习中的特征工程
qq_44980515
机器学习python数据分析人工智能
目录一、特征工程目标二、特征工程内容(一)异常处理(二)特征标准化/归一化(三)数据分桶(四)缺失值处理(五)特征构造(六)特征筛选(特征选择)(七)降维三、代码示例(一)导入数据(二)删除异常值(三)特征构造(四)特征筛选1.过滤式2.包裹式一、特征工程目标对于特征进行进一步分析,并对于数据进行处理。完成对于特征工程的分析,并对于数据进行一些图表或者文字总结。特征工程的主要目的还是在于将数据转换
- Task4 - 建模与调参
100MHz
1.内容介绍线性回归模型:线性回归对于特征的要求;处理长尾分布;理解线性回归模型;模型性能验证:评价函数与目标函数;交叉验证方法;留一验证方法;针对时间序列问题的验证;绘制学习率曲线;绘制验证曲线;嵌入式特征选择:Lasso回归;Ridge回归;决策树;模型对比:常用线性模型;常用非线性模型;模型调参:贪心调参方法;网格调参方法;贝叶斯调参方法;2.一些基本模型线性回归(LinearRegress
- 【MATLAB】PSO_BP神经网络回归预测(多输入多输出)算法原理
Lwcah
MATLAB回归预测算法算法matlab神经网络
有意向获取代码,请转文末观看代码获取方式~也可转原文链接获取~1基本定义PSO-BP神经网络回归预测(多输入多输出)算法是一种结合粒子群优化算法(PSO)和反向传播(BP)神经网络的混合算法。该算法的原理如下:数据预处理:在进行PSO-BP神经网络回归预测之前,需要对数据进行预处理,包括数据清洗、特征选择和数据归一化等步骤。初始化神经网络:首先需要初始化神经网络的结构和初始权值。神经网络可以包含多
- R语言LASSO特征选择、决策树CART算法和CHAID算法电商网站购物行为预测分析
数据挖掘深度学习机器学习算法
全文链接:http://tecdat.cn/?p=32275原文出处:拓端数据部落公众号本文通过分析电子商务平台的用户购物行为,帮助客户构建了一个基于决策树模型的用户购物行为预测分析模型。该模型可以帮助企业预测用户的购物意愿、购物频率及购买金额等重要指标,为企业制定更有针对性的营销策略提供参考。数据来源和处理本研究所使用的数据来自某电子商务平台的用户购物历史记录。读取数据head(data)模型构
- 梯度提升树系列7——深入理解GBDT的参数调优
theskylife
数据分析数据挖掘人工智能数据挖掘机器学习python分类
目录写在开头1.GBDT的关键参数解析1.1学习率(learningrate)1.2树的数量(n_estimators)1.3树的最大深度(max_depth)1.4叶子节点的最小样本数(min_samples_leaf)1.5特征选择的比例(max_features)1.6最小分裂所需的样本数(min_samples_split)1.7子采样比例(subsample)1.8损失函数(loss)1
- 五、机器学习模型及其实现1
ITS_Oaij
脑电机器学习机器学习人工智能
1_机器学习1)基础要求:所有的数据全部变为了特征,而不是eeg信号了python基础已经实现了特征提取、特征选择(可选)进行了数据预处理.预处理指对数据进行清洗、转换等处理,使数据更适合机器学习的工具。Scikit提供了一些预处理的方法,分别是标准化、非线性转换、归一化、二值化、分类特征编码、缺失值插补、生成多项式特征等2)机器学习送入模型的数据结构:data和labeldata:n*m的矩阵,
- 统计学习方法笔记之决策树
Aengus_Sun
更多文章可以访问我的博客Aengus|Blog决策树的概念比较简单,可以将决策树看做一个if-then集合:如果“条件1”,那么...。决策树学习的损失函数通常是正则化后极大似然函数,学习的算法通常是一个递归的选择最优特征,并根据该特征对训练数据进行分割,使得对各个子数据集有一个最好的分类的过程。可以看出,决策树算法一般包含特征选择,决策树的生成与决策树的剪枝过程。特征选择信息增益熵和条件熵在了解
- 数据挖掘应用领域
Liam_ml
目前数据挖掘在各行各业应用广泛,尤其在金融、保险、电子商务和电信方面得到了很好的效果,下面简单阐述一下在金融行业数据挖掘的应用。(1)风险控制(贷款偿还预测和客户信用评价)有很多因素会对货款偿还效能和客户信用等级计算产生不同程度的影响。数据挖掘的方法,如特征选择和属性相关性计算,有助于识别重要的因素和非相关因素。例如,与货款偿还风险相关的因素,包括货款率、贷款期限、负债率、偿还与收入(paymen
- 特征工程:特征提取、特征预处理、特征选择
xiaobai_IT_learn
人工智能python特征工程特征提取特征预处理特征选择
一、特征提取1.字典特征提取sklearn.feature_extraction.DictVectorizer(sparse=True,…)dict=DictVectorizer(sparse=False)data=dict.fit_transform([{'city':'北京','temperature':100},{'city':'上海','temperature':60},{'city':'
- 特征工程:衡量特征的重要型
千寻~
数据处理机器学习特征工程特征选择
知乎特征选择:https://zhuanlan.zhihu.com/p/32749489结合sklearn的几种特征选择方法:https://www.cnblogs.com/hhh5460/p/5186226.html结合sklearn的几种特征选择方法2:https://blog.csdn.net/bryan__/article/details/51607215
- 解线性方程组
qiuwanchi
package gaodai.matrix;
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
public class Test {
public static void main(String[] args) {
Scanner scanner = new Sc
- 在mysql内部存储代码
annan211
性能mysql存储过程触发器
在mysql内部存储代码
在mysql内部存储代码,既有优点也有缺点,而且有人倡导有人反对。
先看优点:
1 她在服务器内部执行,离数据最近,另外在服务器上执行还可以节省带宽和网络延迟。
2 这是一种代码重用。可以方便的统一业务规则,保证某些行为的一致性,所以也可以提供一定的安全性。
3 可以简化代码的维护和版本更新。
4 可以帮助提升安全,比如提供更细
- Android使用Asynchronous Http Client完成登录保存cookie的问题
hotsunshine
android
Asynchronous Http Client是android中非常好的异步请求工具
除了异步之外还有很多封装比如json的处理,cookie的处理
引用
Persistent Cookie Storage with PersistentCookieStore
This library also includes a PersistentCookieStore whi
- java面试题
Array_06
java面试
java面试题
第一,谈谈final, finally, finalize的区别。
final-修饰符(关键字)如果一个类被声明为final,意味着它不能再派生出新的子类,不能作为父类被继承。因此一个类不能既被声明为 abstract的,又被声明为final的。将变量或方法声明为final,可以保证它们在使用中不被改变。被声明为final的变量必须在声明时给定初值,而在以后的引用中只能
- 网站加速
oloz
网站加速
前序:本人菜鸟,此文研究总结来源于互联网上的资料,大牛请勿喷!本人虚心学习,多指教.
1、减小网页体积的大小,尽量采用div+css模式,尽量避免复杂的页面结构,能简约就简约。
2、采用Gzip对网页进行压缩;
GZIP最早由Jean-loup Gailly和Mark Adler创建,用于UNⅨ系统的文件压缩。我们在Linux中经常会用到后缀为.gz
- 正确书写单例模式
随意而生
java 设计模式 单例
单例模式算是设计模式中最容易理解,也是最容易手写代码的模式了吧。但是其中的坑却不少,所以也常作为面试题来考。本文主要对几种单例写法的整理,并分析其优缺点。很多都是一些老生常谈的问题,但如果你不知道如何创建一个线程安全的单例,不知道什么是双检锁,那这篇文章可能会帮助到你。
懒汉式,线程不安全
当被问到要实现一个单例模式时,很多人的第一反应是写出如下的代码,包括教科书上也是这样
- 单例模式
香水浓
java
懒汉 调用getInstance方法时实例化
public class Singleton {
private static Singleton instance;
private Singleton() {}
public static synchronized Singleton getInstance() {
if(null == ins
- 安装Apache问题:系统找不到指定的文件 No installed service named "Apache2"
AdyZhang
apachehttp server
安装Apache问题:系统找不到指定的文件 No installed service named "Apache2"
每次到这一步都很小心防它的端口冲突问题,结果,特意留出来的80端口就是不能用,烦。
解决方法确保几处:
1、停止IIS启动
2、把端口80改成其它 (譬如90,800,,,什么数字都好)
3、防火墙(关掉试试)
在运行处输入 cmd 回车,转到apa
- 如何在android 文件选择器中选择多个图片或者视频?
aijuans
android
我的android app有这样的需求,在进行照片和视频上传的时候,需要一次性的从照片/视频库选择多条进行上传
但是android原生态的sdk中,只能一个一个的进行选择和上传。
我想知道是否有其他的android上传库可以解决这个问题,提供一个多选的功能,可以使checkbox之类的,一次选择多个 处理方法
官方的图片选择器(但是不支持所有版本的androi,只支持API Level
- mysql中查询生日提醒的日期相关的sql
baalwolf
mysql
SELECT sysid,user_name,birthday,listid,userhead_50,CONCAT(YEAR(CURDATE()),DATE_FORMAT(birthday,'-%m-%d')),CURDATE(), dayofyear( CONCAT(YEAR(CURDATE()),DATE_FORMAT(birthday,'-%m-%d')))-dayofyear(
- MongoDB索引文件破坏后导致查询错误的问题
BigBird2012
mongodb
问题描述:
MongoDB在非正常情况下关闭时,可能会导致索引文件破坏,造成数据在更新时没有反映到索引上。
解决方案:
使用脚本,重建MongoDB所有表的索引。
var names = db.getCollectionNames();
for( var i in names ){
var name = names[i];
print(name);
- Javascript Promise
bijian1013
JavaScriptPromise
Parse JavaScript SDK现在提供了支持大多数异步方法的兼容jquery的Promises模式,那么这意味着什么呢,读完下文你就了解了。
一.认识Promises
“Promises”代表着在javascript程序里下一个伟大的范式,但是理解他们为什么如此伟大不是件简
- [Zookeeper学习笔记九]Zookeeper源代码分析之Zookeeper构造过程
bit1129
zookeeper
Zookeeper重载了几个构造函数,其中构造者可以提供参数最多,可定制性最多的构造函数是
public ZooKeeper(String connectString, int sessionTimeout, Watcher watcher, long sessionId, byte[] sessionPasswd, boolea
- 【Java命令三】jstack
bit1129
jstack
jstack是用于获得当前运行的Java程序所有的线程的运行情况(thread dump),不同于jmap用于获得memory dump
[hadoop@hadoop sbin]$ jstack
Usage:
jstack [-l] <pid>
(to connect to running process)
jstack -F
- jboss 5.1启停脚本 动静分离部署
ronin47
以前启动jboss,往各种xml配置文件,现只要运行一句脚本即可。start nohup sh /**/run.sh -c servicename -b ip -g clustername -u broatcast jboss.messaging.ServerPeerID=int -Djboss.service.binding.set=p
- UI之如何打磨设计能力?
brotherlamp
UIui教程ui自学ui资料ui视频
在越来越拥挤的初创企业世界里,视觉设计的重要性往往可以与杀手级用户体验比肩。在许多情况下,尤其对于 Web 初创企业而言,这两者都是不可或缺的。前不久我们在《右脑革命:别学编程了,学艺术吧》中也曾发出过重视设计的呼吁。如何才能提高初创企业的设计能力呢?以下是 9 位创始人的体会。
1.找到自己的方式
如果你是设计师,要想提高技能可以去设计博客和展示好设计的网站如D-lists或
- 三色旗算法
bylijinnan
java算法
import java.util.Arrays;
/**
问题:
假设有一条绳子,上面有红、白、蓝三种颜色的旗子,起初绳子上的旗子颜色并没有顺序,
您希望将之分类,并排列为蓝、白、红的顺序,要如何移动次数才会最少,注意您只能在绳
子上进行这个动作,而且一次只能调换两个旗子。
网上的解法大多类似:
在一条绳子上移动,在程式中也就意味只能使用一个阵列,而不使用其它的阵列来
- 警告:No configuration found for the specified action: \'s
chiangfai
configuration
1.index.jsp页面form标签未指定namespace属性。
<!--index.jsp代码-->
<%@taglib prefix="s" uri="/struts-tags"%>
...
<s:form action="submit" method="post"&g
- redis -- hash_max_zipmap_entries设置过大有问题
chenchao051
redishash
使用redis时为了使用hash追求更高的内存使用率,我们一般都用hash结构,并且有时候会把hash_max_zipmap_entries这个值设置的很大,很多资料也推荐设置到1000,默认设置为了512,但是这里有个坑
#define ZIPMAP_BIGLEN 254
#define ZIPMAP_END 255
/* Return th
- select into outfile access deny问题
daizj
mysqltxt导出数据到文件
本文转自:http://hatemysql.com/2010/06/29/select-into-outfile-access-deny%E9%97%AE%E9%A2%98/
为应用建立了rnd的帐号,专门为他们查询线上数据库用的,当然,只有他们上了生产网络以后才能连上数据库,安全方面我们还是很注意的,呵呵。
授权的语句如下:
grant select on armory.* to rn
- phpexcel导出excel表简单入门示例
dcj3sjt126com
PHPExcelphpexcel
<?php
error_reporting(E_ALL);
ini_set('display_errors', TRUE);
ini_set('display_startup_errors', TRUE);
if (PHP_SAPI == 'cli')
die('This example should only be run from a Web Brows
- 美国电影超短200句
dcj3sjt126com
电影
1. I see. 我明白了。2. I quit! 我不干了!3. Let go! 放手!4. Me too. 我也是。5. My god! 天哪!6. No way! 不行!7. Come on. 来吧(赶快)8. Hold on. 等一等。9. I agree。 我同意。10. Not bad. 还不错。11. Not yet. 还没。12. See you. 再见。13. Shut up!
- Java访问远程服务
dyy_gusi
httpclientwebservicegetpost
随着webService的崛起,我们开始中会越来越多的使用到访问远程webService服务。当然对于不同的webService框架一般都有自己的client包供使用,但是如果使用webService框架自己的client包,那么必然需要在自己的代码中引入它的包,如果同时调运了多个不同框架的webService,那么就需要同时引入多个不同的clien
- Maven的settings.xml配置
geeksun
settings.xml
settings.xml是Maven的配置文件,下面解释一下其中的配置含义:
settings.xml存在于两个地方:
1.安装的地方:$M2_HOME/conf/settings.xml
2.用户的目录:${user.home}/.m2/settings.xml
前者又被叫做全局配置,后者被称为用户配置。如果两者都存在,它们的内容将被合并,并且用户范围的settings.xml优先。
- ubuntu的init与系统服务设置
hongtoushizi
ubuntu
转载自:
http://iysm.net/?p=178 init
Init是位于/sbin/init的一个程序,它是在linux下,在系统启动过程中,初始化所有的设备驱动程序和数据结构等之后,由内核启动的一个用户级程序,并由此init程序进而完成系统的启动过程。
ubuntu与传统的linux略有不同,使用upstart完成系统的启动,但表面上仍维持init程序的形式。
运行
- 跟我学Nginx+Lua开发目录贴
jinnianshilongnian
nginxlua
使用Nginx+Lua开发近一年的时间,学习和实践了一些Nginx+Lua开发的架构,为了让更多人使用Nginx+Lua架构开发,利用春节期间总结了一份基本的学习教程,希望对大家有用。也欢迎谈探讨学习一些经验。
目录
第一章 安装Nginx+Lua开发环境
第二章 Nginx+Lua开发入门
第三章 Redis/SSDB+Twemproxy安装与使用
第四章 L
- php位运算符注意事项
home198979
位运算PHP&
$a = $b = $c = 0;
$a & $b = 1;
$b | $c = 1
问a,b,c最终为多少?
当看到这题时,我犯了一个低级错误,误 以为位运算符会改变变量的值。所以得出结果是1 1 0
但是位运算符是不会改变变量的值的,例如:
$a=1;$b=2;
$a&$b;
这样a,b的值不会有任何改变
- Linux shell数组建立和使用技巧
pda158
linux
1.数组定义 [chengmo@centos5 ~]$ a=(1 2 3 4 5) [chengmo@centos5 ~]$ echo $a 1 一对括号表示是数组,数组元素用“空格”符号分割开。
2.数组读取与赋值 得到长度: [chengmo@centos5 ~]$ echo ${#a[@]} 5 用${#数组名[@或
- hotspot源码(JDK7)
ol_beta
javaHotSpotjvm
源码结构图,方便理解:
├─agent Serviceab
- Oracle基本事务和ForAll执行批量DML练习
vipbooks
oraclesql
基本事务的使用:
从账户一的余额中转100到账户二的余额中去,如果账户二不存在或账户一中的余额不足100则整笔交易回滚
select * from account;
-- 创建一张账户表
create table account(
-- 账户ID
id number(3) not null,
-- 账户名称
nam