HDU 1492 The number of divisors(约数) about Humble Numbers

The number of divisors(约数) about Humble Numbers

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1741    Accepted Submission(s): 852


Problem Description
A number whose only prime factors are 2,3,5 or 7 is called a humble number. The sequence 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 25, 27, ... shows the first 20 humble numbers.

Now given a humble number, please write a program to calculate the number of divisors about this humble number.For examle, 4 is a humble,and it have 3 divisors(1,2,4);12 have 6 divisors.

 
 
   
Input
The input consists of multiple test cases. Each test case consists of one humble number n,and n is in the range of 64-bits signed integer. Input is terminated by a value of zero for n.
 
 
   
Output
For each test case, output its divisor number, one line per case.
 
 
   
Sample Input
4
12
0
 
 
   
Sample Output
3
6
 
 
   
Author
lcy
 
 
   
Source
 
 
   
Recommend
LL
排列组合求约数个数

#include <iostream> #include <map> #include <stdio.h> #include <math.h> #include <string.h> #include <stdlib.h> #include <algorithm> using namespace std; int main() { __int64 n; __int64 rc[4]; int p[4]={2,3,5,7}; while(scanf("%I64d",&n),n) { for(int i=0;i<4;i++) { rc[i]=1; if(n%p[i]==0) while(n%p[i]==0) {n/=p[i];rc[i]++;} } printf("%I64d\n",rc[0]*rc[1]*rc[2]*rc[3]); } return 0; }

你可能感兴趣的:(number)