- TensorFlow Lite (TFLite) 和 PyTorch Mobile介绍2
追心嵌入式
tensorflowpytorch人工智能
以下是TensorFlowLite(TFLite)和PyTorchMobile两大轻量化框架的核心用途、典型应用场景及在嵌入式开发中的实际价值对比,结合你的OrangePiZero3开发板特性进行说明:TensorFlowLite(TFLite)核心用途嵌入式设备推理:将训练好的TensorFlow模型转换为轻量格式,在资源受限设备(如手机、边缘计算盒子、OrangePi)上高效运行。硬件加速:通
- FP16 混合精度在移动端 NPU 上的支持与性能压榨路径:架构差异 × 模型兼容 × 工程落地全解析
观熵
国产NPU×Android推理优化架构neo4j人工智能
FP16混合精度在移动端NPU上的支持与性能压榨路径:架构差异×模型兼容×工程落地全解析关键词FP16、混合精度、移动端NPU、国产芯片、TensorFlowLite、NNAPI、模型压缩、图优化、精度漂移、硬件加速、算子支持、高效推理摘要随着国产NPU芯片在手机、边缘端等设备的广泛部署,FP16(HalfPrecisionFloatingPoint)因其在计算效率、内存带宽、功耗方面的综合优势,
- 在tensorflow源码环境里,编译出独立的jni.so,避免依赖libtensorflowlite.so,从而实现apk体积最小化
Ritter_Liu
tensorflow人工智能python
需要在APP里使用tensorflowlite来运行PC端训练的model.tlite,又想apk的体积最小,尝试了如下方法:1.在gradle里配置implementation("org.tensorflow:tensorflow-lite:2.16.1")这样会引入tensorflow.jar,最终apk的size增加大约2.2M2.根据tensorflow官方的优化编译教程https://w
- AI模型压缩与优化:如何在资源受限设备上运行大模型?
北辰alk
AI人工智能
前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站https://www.captainbed.cn/north文章目录一、引言:边缘计算的挑战与机遇二、模型压缩技术全景图2.1主要压缩技术分类2.2技术选型决策树三、核心优化技术详解3.1参数量化(Quantization)3.1.1基本原理3.1.2TensorFlowLite量化实践3.2模型修剪
- 实时人体姿态检测:YOLOv8与OpenCV的强强联合
matlab_python22
目标检测
这段代码实现了一个基于MoveNetLightning模型和OpenCV的实时姿态检测系统。它通过网络摄像头捕获视频流,利用TensorFlowLite加载预训练的MoveNetLightning模型,对每一帧图像进行姿态关键点检测。检测到的关键点(如人体的关节位置)会被绘制在图像上,并通过线条连接这些关键点以表示人体的骨骼结构。用户可以通过调整置信度阈值来过滤掉置信度较低的关键点和连接,从而提高
- 深度学习在移动开发中的应用:图像分类实战
软考和人工智能学堂
人工智能#深度学习#DeepSeek进阶开发与应用深度学习分类人工智能
深度学习在移动开发中的应用:图像分类实战引言:移动端深度学习的崛起随着智能手机性能的不断提升和深度学习模型的持续优化,将AI能力集成到移动应用中已成为可能且日益流行。移动端深度学习为开发者提供了前所未有的机会,能够在设备本地实现智能功能,无需依赖云端服务,从而保护用户隐私、减少延迟并降低服务器成本。本文将深入探讨如何在移动应用中实现图像分类功能,使用TensorFlowLite框架将预训练模型部署
- 《TensorFlow 与 TensorFlow Lite:协同驱动 AI 应用全景》
未来创世纪
机器学习人工智能tensorflowpython
《TensorFlow与TensorFlowLite:协同驱动AI应用全景》摘要:在机器学习技术浪潮中,TensorFlow与TensorFlowLite作为Google技术栈的核心组件,分别占据云端训练与端侧部署的关键位置。本文将系统梳理二者架构特性、功能定位、技术差异及互补关系,结合多行业应用案例,全景式展现如何通过协同开发流程实现从复杂模型训练到轻量化终端部署的全流程落地,助力开发者精准把握
- 树莓派智能摄像头实战指南:基于TensorFlow Lite的端到端AI部署
Tech Synapse
人工智能tensorflowpythonMobileNetV2TensorFlowLite
引言:嵌入式AI的革新力量在物联网与人工智能深度融合的今天,树莓派这一信用卡大小的计算机正在成为边缘计算的核心载体。本文将手把手教你打造一款基于TensorFlowLite的低功耗智能监控设备,通过MobileNetV2模型实现实时物体检测,结合运动检测算法构建双保险监控体系。我们将深入探索模型轻量化部署、硬件加速优化和功耗管理策略,为嵌入式AI开发提供完整技术路线图。一、智能监控系统的技术架构1
- 树莓派智能摄像头实战指南:基于TensorFlow Lite的端到端AI部署
大G哥
人工智能tensorflowpython深度学习机器学习
引言:嵌入式AI的革新力量在物联网与人工智能深度融合的今天,树莓派这一信用卡大小的计算机正在成为边缘计算的核心载体。本文将手把手教你打造一款基于TensorFlowLite的低功耗智能监控设备,通过MobileNetV2模型实现实时物体检测,结合运动检测算法构建双保险监控体系。我们将深入探索模型轻量化部署、硬件加速优化和功耗管理策略,为嵌入式AI开发提供完整技术路线图。一、智能监控系统的技术架构1
- 模型部署全流程:SavedModel、TFLite、TF.js、ONNX 的导出与实战
AI筑梦师
计算机视觉人工智能学习框架javascriptneo4j开发语言计算机视觉tensorflow持续部署人工智能
模型部署全流程:SavedModel、TFLite、TF.js、ONNX的导出与实战TensorFlow的最大优势之一,就是拥有“端到端部署闭环”。从训练到导出,用户可根据目标平台灵活选择格式,部署到:服务端(TFServing/TensorRT)移动端(TensorFlowLite)浏览器端(TensorFlow.js)多框架跨平台(ONNX)本章我们将覆盖四大部署格式,逐一讲清其导出方式、平台
- 深度学习框架与边缘计算融合驱动医疗金融模型优化新路径
智能计算研究中心
其他
内容概要随着边缘计算与深度学习框架的深度融合,医疗与金融领域的模型优化正在突破传统算力与隐私保护的瓶颈。当前,TensorFlow、PyTorch等主流框架通过轻量化改造(如TensorFlowLite与PyTorchMobile)逐步适应边缘设备的资源限制,同时结合联邦学习技术构建分布式训练网络。这种技术协同不仅降低了医疗影像诊断中的数据传输延迟,还通过动态模型压缩策略(如量化与剪枝)将金融预测
- TensorFlow LiteRT 概览
姚家湾
tensorflow人工智能python
LiteRT(简称LiteRuntime,以前称为TensorFlowLite)是Google面向设备端AI的高性能运行时。您可以找到适用于各种机器学习/AI任务的LiteRT就绪模型,也可以使用AIEdge转换和优化工具将TensorFlow、PyTorch和JAX模型转换为TFLite格式并运行。主要特性针对设备端机器学习进行了优化:LiteRT解决了五项关键的ODML约束条件:延迟时间(无需
- 简述Caffe、TensorFlow、TensorFlow Lite、ONNX、DarkNet、PyTorch 等模型
科学的发展-只不过是读大自然写的代码
断纱检测caffetensorflowpytorch
以下是对Caffe、TensorFlow、TensorFlowLite、ONNX、DarkNet和PyTorch等模型的简述:Caffe:Caffe(ConvolutionArchitectureForFeatureExtraction)是一个用于特征抽取的卷积框架,它是一个清晰、可读性高且快速的深度学习框架。Caffe由加州伯克利大学的贾扬清开发,起初是一个用于深度卷积网络的Python框架(无
- TensorFlow和它的弟弟们
活蹦乱跳酸菜鱼
tensorflow人工智能python
TensorFlow、TensorFlowLite、TensorFlowLiteMicro是Google在深度学习领域推出的三个不同产品,它们各自有着不同的设计目标和适用场景。以下是它们之间的主要区别:1.TensorFlow(PC\GPU)设计目标:TensorFlow是一个开源的机器学习框架,由GoogleBrain团队开发,旨在帮助开发者构建和训练深度学习模型。它支持多种编程语言(如Pyth
- 【Rust日报】 2019-05-14:Rust中哪些特性是零开销抽象的
六六子大顺1
tract-一个神经网络训练库Snips(一家做音频识别的创业公司)出品。在神经网络领域,现在基本已经被TensorFlow和PyTorch给占了。但是对于移动设备或IoT这些性能受限的设备,还有很多空间可以尝试。TensorFlow组推出了TensorFlowLite,微软的ONNX看上去也很有前景。一些硬件厂商也推出了他们自己的方案AndroidNNAPI,ARMNNSDK,AppleBNNS
- Android 实现照片抠出人像。
No Promises﹉
android
谢谢阅览、关注!!一、各平台的实现方式:1.Android实现方式:使用图像处理库(如OpenCV):集成OpenCV库,利用其图像处理功能进行边缘检测和图像分割;使用机器学习模型(如TensorFlowLite):集成TensorFlowLite和预训练的人像分割模型;使用第三方API服务:利用如百度AI、腾讯AI等提供的在线API进行图像处理。步骤:集成必要的库或API、加载和处理图像、应用抠
- Arduino使用TinyML实现水果识别
亚图跨际
物联网编程Arduinotensorflowarduinotinyml
在本文中,板载手势传感器将用于收集对象识别数据,这些数据将用于创建TensorFlowLite模型,该模型可用于识别特定对象。电路板的接近传感器功能将用于识别物体何时靠近电路板,而RGB传感器用于首先收集物体的颜色数据,然后正确识别物体。这是一个简单的示例,但确实显示了在小型设备上运行TinyML的潜力以及传感器丰富的Arduino蓝牙传感器的强大功能。硬件水果ArduinoIDE准备安装库文件捕
- TensorFlow Lite 结构概览
憨包Humble
TensorFlowLite和TensorFlow的关系1.PNG下面将着重介绍模型结构格式(ModelFormat)和解析器概况(Interpreter)2.PNGTensorFlowLiteModelFileModelFile的代码位于tensorflow-master/tensorflow/lite/schema文件夹中,模型文件的主结构如下Model结构体所示3.PNGModel结构体定义
- 第五部分:TensorFlowLite介绍
清☆茶
人工智能tensorflow机器学习线性回归
tensorflowLite是google推出的一个端侧深度学习模型、推理框架,关注业务本身模型的优化。tensorflowlite缩写简称tflite。本章覆盖的知识点:TensorFlowLite简介TensorFlowLite的Android部署TensorFlowLite的IOS部署TensorFlowLite与边缘智能TensorFlowLite简介**特性:**轻量化、低延迟、隐私保护
- 深度学习笔记(九)——tf模型导出保存、模型加载、常用模型导出tflite、权重量化、模型部署
絮沫
深度学习深度学习笔记人工智能
文中程序以Tensorflow-2.6.0为例部分概念包含笔者个人理解,如有遗漏或错误,欢迎评论或私信指正。本篇博客主要是工具性介绍,可能由于软件版本问题导致的部分内容无法使用。首先介绍tflite:TensorFlowLite是一组工具,可帮助开发者在移动设备、嵌入式设备和loT设备上运行模型,以便实现设备端机器学习。框架具有的主要特性:延时(数据无需往返服务器)隐私(没有任何个人数据离开设备)
- 【机器学习】TensorFlowLite安装和模型训练
命运之手
Python机器学习人工智能TensorFlowTFLite模型训练
运行环境Linux,部分库不支持Apple芯片做AI这部分的开发,还是强烈建议装个Linux双系统或虚拟机这些比折腾Windows和Mac上的移植环境要轻松得多安装依赖sudoaptinstalllibportaudio2=19.6.0-1.2pip3installtf-models-official==2.3.0pip3installtensorflow-hub==0.12pip3install
- Tensorflow Lite从入门到精通
AAI机器之心
tensorflow人工智能pythonYOLO目标检测深度学习机器学习
TensorFlowLite是TensorFlow在移动和IoT等边缘设备端的解决方案,提供了Java、Python和C++API库,可以运行在Android、iOS和RaspberryPi等设备上。目前TFLite只提供了推理功能,在服务器端进行训练后,经过如下简单处理即可部署到边缘设备上。个人使用总结:如果我们只使用Tensorflow的高级API搭建模型,那么将TF转TFLite再转TFli
- 【tensorflow&flutter】自己写个机器学习模型用在项目上?
这次选左边
机器学习人工智能fluttertensorflowandroidios
背景拍摄APP项目上线有一阵了,每天的拍摄数据呈现波动上升状态、业务方需要对数据进行加工,如果能有对未来的数据量的预测就好了。目标在端侧展示拍摄数据可视化趋势图等、并能推断数据(选择预测日期)简单实现个demogif背景有点问题先写总结现在来看、出来的东西很简单,但是整个流程时串通起来了。至于什么是tensorflowlite初识TensorFlowLite-CSDN博客总体流程图是这样的从左侧的
- 【TensorFlow 精简版】TensorFlow Lite
Jackilina_Stone
#DeepLearning人工智能pythonTFlite
目录一TensorFlowLite简介二开发三开始使用一TensorFlowLite简介TensorFlowLite是一组工具,可帮助开发者在移动设备、嵌入式设备和loT设备上运行模型,以便实现设备端机器学习。针对设备端的机器学习进行的优化:①延时(数据无需往返服务器);②隐私(没有任何个人数据离开设备);③连接性(无需连接互联网);④大小(缩减了模型和二进制文件的大小);⑤功耗(高效推断,且无需
- 【模型】模型量化技术:动态范围、全整数和Float16量化
Jackilina_Stone
#DeepLearning人工智能模型TensorFlow
目录一动态范围量化二全整数量化三float16量化通常,表示神经网络的数据类型是32位浮点数(float32),这种数据类型可以提供高精度的计算,但是在计算资源和存储空间有限的设备上运行神经网络时,会带来一定的挑战,因此可以对模型进行量化处理。Int8量化是一种将神经网络权重和激活值转换为8位整数(int8)表示的技术。TensorFlowLite转换器将已训练的浮点TensorFlow模型转换为
- RK3588平台开发系列讲解(AI 篇)RKNN-Toolkit2 模型的加载转换
内核笔记
RK3588Android12开发入门到精通专栏人工智能RK3588
文章目录一、Caffe模型加载接口二、TensorFlow模型加载接口三、TensorFlowLite模型加载接口四、ONNX模型加载五、DarkNet模型加载接口六、PyTorch模型加载接口沉淀、分享、成长,让自己和他人都能有所收获!RKNN-Toolkit2目前支持Caffe、TensorFlow、TensorFlowLite、ONNX、DarkNet、PyTorch等模型的加载转换,这些模
- 【AI】模型结构可视化工具Netron应用
TopFancy
人工智能人工智能模型可视化Netron
随着AI模型的发展,模型的结构也变得越来越复杂,理解起来越来越困难,这时候能够画一张结构图就好了,就像我们在开发过程中用到的UML类图,能够直观看出不同层之间的关系,于是Netron就来了。Netron支持神经网络、深度学习和机器学习网络的可视化。支持ONNX,TensorFlowLite,CoreML,Keras,Caffe,Darknet,MXNet,PaddlePaddle,ncnn,MNN
- 84TensorFlow 2 模型部署方法实践--使用 TensorFlow Lite 部署模型
Jachin111
使用TensorFlowLite部署模型环境配置线上环境使用的Tensorflow版本为2.1.0。TensorFlowLite模型转换在TensorFlow2中,用于将TensorFlow模型转换为TensorFlowLite的API为tf.lite.TFLiteConverter,其中包含三种方法:from_keras_model,用于转换Keras模型。from_saved_model,用于
- 如何把Tensorflow模型转换成TFLite模型
dvlee1024
深度学习迅猛发展,目前已经可以移植到移动端使用了,TensorFlow推出的TensorFlowLite就是一款把深度学习应用到移动端的框架技术。使用TensorFlowLite需要tflite文件模型,这个模型可以由TensorFlow训练的模型转换而成。所以首先需要知道如何保存训练好的TensorFlow模型。一般有这几种保存形式:CheckpointsHDF5SavedModel等保存与读取
- 物联网技术周报第 115 期: 构建实用的 IoT 应用程序:空气质量监视器
weixin_33816946
5g嵌入式lua
新闻\\\《Google正式发布TensorFlowLite预览版,针对移动/嵌入设备的轻量级解决方案》日前,谷歌正式发布TensorFlowLite开发者预览版,这是针对移动和嵌入式设备的轻量级解决方案。TensorFlowLite是一种全新的设计,具有三个重要功能——轻量级(Lightweight)、跨平台(Cross-platform)、快速(Fast)。\\\\《重回硬件市场百度发布智能音
- HttpClient 4.3与4.3版本以下版本比较
spjich
javahttpclient
网上利用java发送http请求的代码很多,一搜一大把,有的利用的是java.net.*下的HttpURLConnection,有的用httpclient,而且发送的代码也分门别类。今天我们主要来说的是利用httpclient发送请求。
httpclient又可分为
httpclient3.x
httpclient4.x到httpclient4.3以下
httpclient4.3
- Essential Studio Enterprise Edition 2015 v1新功能体验
Axiba
.net
概述:Essential Studio已全线升级至2015 v1版本了!新版本为JavaScript和ASP.NET MVC添加了新的文件资源管理器控件,还有其他一些控件功能升级,精彩不容错过,让我们一起来看看吧!
syncfusion公司是世界领先的Windows开发组件提供商,该公司正式对外发布Essential Studio Enterprise Edition 2015 v1版本。新版本
- [宇宙与天文]微波背景辐射值与地球温度
comsci
背景
宇宙这个庞大,无边无际的空间是否存在某种确定的,变化的温度呢?
如果宇宙微波背景辐射值是表示宇宙空间温度的参数之一,那么测量这些数值,并观测周围的恒星能量输出值,我们是否获得地球的长期气候变化的情况呢?
&nbs
- lvs-server
男人50
server
#!/bin/bash
#
# LVS script for VS/DR
#
#./etc/rc.d/init.d/functions
#
VIP=10.10.6.252
RIP1=10.10.6.101
RIP2=10.10.6.13
PORT=80
case $1 in
start)
/sbin/ifconfig eth2:0 $VIP broadca
- java的WebCollector爬虫框架
oloz
爬虫
WebCollector主页:
https://github.com/CrawlScript/WebCollector
下载:webcollector-版本号-bin.zip将解压后文件夹中的所有jar包添加到工程既可。
接下来看demo
package org.spider.myspider;
import cn.edu.hfut.dmic.webcollector.cra
- jQuery append 与 after 的区别
小猪猪08
1、after函数
定义和用法:
after() 方法在被选元素后插入指定的内容。
语法:
$(selector).after(content)
实例:
<html>
<head>
<script type="text/javascript" src="/jquery/jquery.js"></scr
- mysql知识充电
香水浓
mysql
索引
索引是在存储引擎中实现的,因此每种存储引擎的索引都不一定完全相同,并且每种存储引擎也不一定支持所有索引类型。
根据存储引擎定义每个表的最大索引数和最大索引长度。所有存储引擎支持每个表至少16个索引,总索引长度至少为256字节。
大多数存储引擎有更高的限制。MYSQL中索引的存储类型有两种:BTREE和HASH,具体和表的存储引擎相关;
MYISAM和InnoDB存储引擎
- 我的架构经验系列文章索引
agevs
架构
下面是一些个人架构上的总结,本来想只在公司内部进行共享的,因此内容写的口语化一点,也没什么图示,所有内容没有查任何资料是脑子里面的东西吐出来的因此可能会不准确不全,希望抛砖引玉,大家互相讨论。
要注意,我这些文章是一个总体的架构经验不针对具体的语言和平台,因此也不一定是适用所有的语言和平台的。
(内容是前几天写的,现附上索引)
前端架构 http://www.
- Android so lib库远程http下载和动态注册
aijuans
andorid
一、背景
在开发Android应用程序的实现,有时候需要引入第三方so lib库,但第三方so库比较大,例如开源第三方播放组件ffmpeg库, 如果直接打包的apk包里面, 整个应用程序会大很多.经过查阅资料和实验,发现通过远程下载so文件,然后再动态注册so文件时可行的。主要需要解决下载so文件存放位置以及文件读写权限问题。
二、主要
- linux中svn配置出错 conf/svnserve.conf:12: Option expected 解决方法
baalwolf
option
在客户端访问subversion版本库时出现这个错误:
svnserve.conf:12: Option expected
为什么会出现这个错误呢,就是因为subversion读取配置文件svnserve.conf时,无法识别有前置空格的配置文件,如### This file controls the configuration of the svnserve daemon, if you##
- MongoDB的连接池和连接管理
BigCat2013
mongodb
在关系型数据库中,我们总是需要关闭使用的数据库连接,不然大量的创建连接会导致资源的浪费甚至于数据库宕机。这篇文章主要想解释一下mongoDB的连接池以及连接管理机制,如果正对此有疑惑的朋友可以看一下。
通常我们习惯于new 一个connection并且通常在finally语句中调用connection的close()方法将其关闭。正巧,mongoDB中当我们new一个Mongo的时候,会发现它也
- AngularJS使用Socket.IO
bijian1013
JavaScriptAngularJSSocket.IO
目前,web应用普遍被要求是实时web应用,即服务端的数据更新之后,应用能立即更新。以前使用的技术(例如polling)存在一些局限性,而且有时我们需要在客户端打开一个socket,然后进行通信。
Socket.IO(http://socket.io/)是一个非常优秀的库,它可以帮你实
- [Maven学习笔记四]Maven依赖特性
bit1129
maven
三个模块
为了说明问题,以用户登陆小web应用为例。通常一个web应用分为三个模块,模型和数据持久化层user-core, 业务逻辑层user-service以及web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和user-service
依赖作用范围
Maven的dependency定义
- 【Akka一】Akka入门
bit1129
akka
什么是Akka
Message-Driven Runtime is the Foundation to Reactive Applications
In Akka, your business logic is driven through message-based communication patterns that are independent of physical locatio
- zabbix_api之perl语言写法
ronin47
zabbix_api之perl
zabbix_api网上比较多的写法是python或curl。上次我用java--http://bossr.iteye.com/blog/2195679,这次用perl。for example: #!/usr/bin/perl
use 5.010 ;
use strict ;
use warnings ;
use JSON :: RPC :: Client ;
use
- 比优衣库跟牛掰的视频流出了,兄弟连Linux运维工程师课堂实录,更加刺激,更加实在!
brotherlamp
linux运维工程师linux运维工程师教程linux运维工程师视频linux运维工程师资料linux运维工程师自学
比优衣库跟牛掰的视频流出了,兄弟连Linux运维工程师课堂实录,更加刺激,更加实在!
-----------------------------------------------------
兄弟连Linux运维工程师课堂实录-计算机基础-1-课程体系介绍1
链接:http://pan.baidu.com/s/1i3GQtGL 密码:bl65
兄弟连Lin
- bitmap求哈密顿距离-给定N(1<=N<=100000)个五维的点A(x1,x2,x3,x4,x5),求两个点X(x1,x2,x3,x4,x5)和Y(
bylijinnan
java
import java.util.Random;
/**
* 题目:
* 给定N(1<=N<=100000)个五维的点A(x1,x2,x3,x4,x5),求两个点X(x1,x2,x3,x4,x5)和Y(y1,y2,y3,y4,y5),
* 使得他们的哈密顿距离(d=|x1-y1| + |x2-y2| + |x3-y3| + |x4-y4| + |x5-y5|)最大
- map的三种遍历方法
chicony
map
package com.test;
import java.util.Collection;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Set;
public class TestMap {
public static v
- Linux安装mysql的一些坑
chenchao051
linux
1、mysql不建议在root用户下运行
2、出现服务启动不了,111错误,注意要用chown来赋予权限, 我在root用户下装的mysql,我就把usr/share/mysql/mysql.server复制到/etc/init.d/mysqld, (同时把my-huge.cnf复制/etc/my.cnf)
chown -R cc /etc/init.d/mysql
- Sublime Text 3 配置
daizj
配置Sublime Text
Sublime Text 3 配置解释(默认){// 设置主题文件“color_scheme”: “Packages/Color Scheme – Default/Monokai.tmTheme”,// 设置字体和大小“font_face”: “Consolas”,“font_size”: 12,// 字体选项:no_bold不显示粗体字,no_italic不显示斜体字,no_antialias和
- MySQL server has gone away 问题的解决方法
dcj3sjt126com
SQL Server
MySQL server has gone away 问题解决方法,需要的朋友可以参考下。
应用程序(比如PHP)长时间的执行批量的MYSQL语句。执行一个SQL,但SQL语句过大或者语句中含有BLOB或者longblob字段。比如,图片数据的处理。都容易引起MySQL server has gone away。 今天遇到类似的情景,MySQL只是冷冷的说:MySQL server h
- javascript/dom:固定居中效果
dcj3sjt126com
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&
- 使用 Spring 2.5 注释驱动的 IoC 功能
e200702084
springbean配置管理IOCOffice
使用 Spring 2.5 注释驱动的 IoC 功能
developerWorks
文档选项
将打印机的版面设置成横向打印模式
打印本页
将此页作为电子邮件发送
将此页作为电子邮件发送
级别: 初级
陈 雄华 (
[email protected]), 技术总监, 宝宝淘网络科技有限公司
2008 年 2 月 28 日
&nb
- MongoDB常用操作命令
geeksun
mongodb
1. 基本操作
db.AddUser(username,password) 添加用户
db.auth(usrename,password) 设置数据库连接验证
db.cloneDataBase(fromhost)
- php写守护进程(Daemon)
hongtoushizi
PHP
转载自: http://blog.csdn.net/tengzhaorong/article/details/9764655
守护进程(Daemon)是运行在后台的一种特殊进程。它独立于控制终端并且周期性地执行某种任务或等待处理某些发生的事件。守护进程是一种很有用的进程。php也可以实现守护进程的功能。
1、基本概念
&nbs
- spring整合mybatis,关于注入Dao对象出错问题
jonsvien
DAOspringbeanmybatisprototype
今天在公司测试功能时发现一问题:
先进行代码说明:
1,controller配置了Scope="prototype"(表明每一次请求都是原子型)
@resource/@autowired service对象都可以(两种注解都可以)。
2,service 配置了Scope="prototype"(表明每一次请求都是原子型)
- 对象关系行为模式之标识映射
home198979
PHP架构企业应用对象关系标识映射
HELLO!架构
一、概念
identity Map:通过在映射中保存每个已经加载的对象,确保每个对象只加载一次,当要访问对象的时候,通过映射来查找它们。其实在数据源架构模式之数据映射器代码中有提及到标识映射,Mapper类的getFromMap方法就是实现标识映射的实现。
二、为什么要使用标识映射?
在数据源架构模式之数据映射器中
//c
- Linux下hosts文件详解
pda158
linux
1、主机名: 无论在局域网还是INTERNET上,每台主机都有一个IP地址,是为了区分此台主机和彼台主机,也就是说IP地址就是主机的门牌号。 公网:IP地址不方便记忆,所以又有了域名。域名只是在公网(INtERNET)中存在,每个域名都对应一个IP地址,但一个IP地址可有对应多个域名。 局域网:每台机器都有一个主机名,用于主机与主机之间的便于区分,就可以为每台机器设置主机
- nginx配置文件粗解
spjich
javanginx
#运行用户#user nobody;#启动进程,通常设置成和cpu的数量相等worker_processes 2;#全局错误日志及PID文件#error_log logs/error.log;#error_log logs/error.log notice;#error_log logs/error.log inf
- 数学函数
w54653520
java
public
class
S {
// 传入两个整数,进行比较,返回两个数中的最大值的方法。
public
int
get(
int
num1,
int
nu