首先介绍 Transformer 的整体结构,下图是 Transformer 用于中英文翻译的整体结构:
可以看到 Transformer 由 Encoder 和 Decoder 两个部分组成,Encoder 和 Decoder 都包含 6 个 block。Transformer 的工作流程大体如下:
第一步:获取输入句子的每一个单词的表示向量 X,X由单词的 Embedding(Embedding就是从原始数据提取出来的Feature) 和单词位置的 Embedding 相加得到。
第二步:将得到的单词表示向量矩阵 (如上图所示,每一行是一个单词的表示 x) 传入 Encoder 中,经过 6 个 Encoder block 后可以得到句子所有单词的编码信息矩阵 C,如下图。单词向量矩阵用 X (n x d)表示, n 是句子中单词个数,d 是表示向量的维度 (论文中 d=512)。每一个 Encoder block 输出的矩阵维度与输入完全一致。
第三步:将 Encoder 输出的编码信息矩阵 C传递到 Decoder 中,Decoder 依次会根据当前翻译过的单词 1~ i 翻译下一个单词 i+1,如下图所示。在使用的过程中,翻译到单词 i+1 的时候需要通过 Mask (掩盖) 操作遮盖住 i+1 之后的单词。
上图 Decoder 接收了 Encoder 的编码矩阵 C,然后首先输入一个翻译开始符"
Transformer 中单词的输入表示 x由单词 Embedding 和位置 Embedding (Positional Encoding)相加得到。
单词的 Embedding 有很多种方式可以获取,例如可以采用 Word2Vec、Glove 等算法预训练得到,也可以在 Transformer 中训练得到。
Transformer 中除了单词的 Embedding,还需要使用位置 Embedding 表示单词出现在句子中的位置。因为 Transformer 不采用 RNN 的结构,而是使用全局信息,不能利用单词的顺序信息,而这部分信息对于 NLP 来说非常重要。所以 Transformer 中使用位置 Embedding 保存单词在序列中的相对或绝对位置。
位置 Embedding 用 PE表示,PE 的维度与单词 Embedding 是一样的。PE 可以通过训练得到,也可以使用某种公式计算得到。在 Transformer 中采用了后者,计算公式如下:
其中,pos 表示单词在句子中的位置,d 表示 PE的维度 (与词 Embedding 一样),2i 表示偶数的维度,2i+1 表示奇数维度 (即 2i≤d, 2i+1≤d)。使用这种公式计算 PE 有以下的好处:
将单词的词 Embedding 和位置 Embedding 相加,就可以得到单词的表示向量 x,x 就是 Transformer 的输入。
上图是论文中 Transformer 的内部结构图,左侧为 Encoder block,右侧为 Decoder block。红色圈中的部分为 Multi-Head Attention,是由多个 Self-Attention组成的,可以看到 Encoder block 包含一个 Multi-Head Attention,而 Decoder block 包含两个 Multi-Head Attention (其中有一个用到 Masked)。Multi-Head Attention 上方还包括一个 Add & Norm 层,Add 表示残差连接 (Residual Connection) 用于防止网络退化,Norm 表示 Layer Normalization,用于对每一层的激活值进行归一化。
因为 Self-Attention是 Transformer 的重点,所以我们重点关注 Multi-Head Attention 以及 Self-Attention,首先详细了解一下 Self-Attention 的内部逻辑。
上图是 Self-Attention 的结构,在计算的时候需要用到矩阵Q(查询),K(键值),V(值)。在实际中,Self-Attention 接收的是输入(单词的表示向量x组成的矩阵X) 或者上一个 Encoder block 的输出。而Q,K,V正是通过 Self-Attention 的输入进行线性变换得到的。
Self-Attention 的输入用矩阵X进行表示,则可以使用线性变阵矩阵WQ,WK,WV计算得到Q,K,V。计算如下图所示,注意 X, Q, K, V 的每一行都表示一个单词。
得到矩阵 Q, K, V之后就可以计算出 Self-Attention 的输出了,计算的公式如下:
公式中计算矩阵Q和K每一行向量的内积,为了防止内积过大,因此除以 向量维度的平方根。Q乘以K的转置后,得到的矩阵行列数都为 n,n 为句子单词数,这个矩阵可以表示单词之间的 attention 强度。下图为Q乘以K的转置,1234 表示的是句子中的单词。
得到QK的结果之后,使用 Softmax 计算每一个单词对于其他单词的 attention 系数,公式中的 Softmax 是对矩阵的每一行进行 Softmax,即每一行的和都变为 1.
得到 Softmax 矩阵之后可以和V相乘,得到最终的输出Z。
上图中 Softmax 矩阵的第 1 行表示单词 1 与其他所有单词的 attention 系数,最终单词 1 的输出等于所有单词 i 的值 根据 attention 系数的比例加在一起得到,如下图所示:
在上一步,我们已经知道怎么通过 Self-Attention 计算得到输出矩阵 Z,而 Multi-Head Attention 是由多个 Self-Attention 组合形成的,下图是论文中 Multi-Head Attention 的结构图。
从上图可以看到 Multi-Head Attention 包含多个 Self-Attention 层,首先将输入X分别传递到 h 个不同的 Self-Attention 中,计算得到 h 个输出矩阵Z。下图是 h=8 时候的情况,此时会得到 8 个输出矩阵Z。
得到 8 个输出矩阵 Z1到 Z8之后,Multi-Head Attention 将它们拼接在一起 (Concat),然后传入一个Linear层,得到 Multi-Head Attention 最终的输出Z。
可以看到 Multi-Head Attention 输出的矩阵Z与其输入的矩阵X的维度是一样的。
上图红色部分是 Transformer 的 Encoder block 结构,可以看到是由 Multi-Head Attention, Add & Norm, Feed Forward, Add & Norm 组成的。刚刚已经了解了 Multi-Head Attention 的计算过程,现在了解一下 Add & Norm 和 Feed Forward 部分。
Add & Norm 层由 Add 和 Norm 两部分组成,其计算公式如下
其中 X表示 Multi-Head Attention 或者 Feed Forward 的输入,MultiHeadAttention(X) 和 FeedForward(X) 表示输出 (输出与输入 X 维度是一样的,所以可以相加)。
Add指 X+MultiHeadAttention(X),是一种残差连接,通常用于解决多层网络训练的问题,可以让网络只关注当前差异的部分,在 ResNet 中经常用到:
Norm指 Layer Normalization,通常用于 RNN 结构,Layer Normalization 会将每一层神经元的输入都转成均值方差都一样的,这样可以加快收敛。
Feed Forward 层比较简单,是一个两层的全连接层,第一层的激活函数为 Relu,第二层不使用激活函数,对应的公式如下。
X是输入,Feed Forward 最终得到的输出矩阵的维度与X一致。
通过上面描述的 Multi-Head Attention, Feed Forward, Add & Norm 就可以构造出一个 Encoder block,Encoder block 接收输入矩阵X(n x d),并输出一个矩阵 O(n x d) 。通过多个 Encoder block 叠加就可以组成 Encoder。
第一个 Encoder block 的输入为句子单词的表示向量矩阵,后续 Encoder block 的输入是前一个 Encoder block 的输出,最后一个 Encoder block 输出的矩阵就是编码信息矩阵 C,这一矩阵后续会用到 Decoder 中。
上图红色部分为 Transformer 的 Decoder block 结构,与 Encoder block 相似,但是存在一些区别:
当第1个时刻的解码过程完成之后,解码器便会将解码第1个时刻时的输入,以及解码第1个时刻后的输出均作为解码器的输入来解码预测第2个时刻的输出。整个过程可以通过如下图所示的过程来进行表示。
如图所示,Decoder在对当前时刻进行解码输出时,都会将当前时刻之前所有的预测结果作为输入来对下一个时刻的输出进行预测。假设现在需要将"我 是 谁"翻译成英语"who am i",且解码预测后前两个时刻的结果为"who am",接下来需要对下一时刻的输出"i"进行预测,那么整个过程就可以通过上图和下图
来进行表示。
如图所示,左上角的矩阵是解码器对输入" who am"这3个词经过解码器中自注意力机制编码后的结果;左下角是编码器对输入"我 是 谁"这3个词编码后的结果;两者分别在经过线性变换后便得到了Q、K和V这3个矩阵。此时值得注意的是,左上角矩阵中的每一个向量在经过自注意力机制编码后,每个向量同样也包含了其它位置上的编码信息。进一步,Q与K作用和便得到了一个权重矩阵;再将其与V进行线性组合便得到了Encoder-Decoder attention部分的输出,如下图所示。
如图上图所示,左下角便是Q与K作用后的权重矩阵,它的每一行就表示在对Memory(V)中的每一位置进行解码时,应该如何对注意力进行分配。例如第3行的含义就是在解码当前时刻时应该将的注意力放在Memory中的"我"上,其它同理。这样,在经过解码器中的两个全连接层后,便得到了解码器最终的输出结果。接着,解码器会循环对下一个时刻的输出进行解码预测,直到预测结果为"
Decoder block 的第一个 Multi-Head Attention 采用了 Masked 操作,因为在翻译的过程中是顺序翻译的,即翻译完第 i 个单词,才可以翻译第 i+1 个单词。通过 Masked 操作可以防止第 i 个单词知道 i+1 个单词之后的信息。下面以 “我有一只猫” 翻译成 “I have a cat” 为例,了解一下 Masked 操作。
下面的描述中使用了类似 Teacher Forcing 的概念,不熟悉 Teacher Forcing 的童鞋可以参考以下上一篇文章Seq2Seq 模型详解。在 Decoder 的时候,是需要根据之前的翻译,求解当前最有可能的翻译,如下图所示。首先根据输入 “
Decoder 可以在训练的过程中使用 Teacher Forcing 并且并行化训练,即将正确的单词序列 ( I have a cat) 和对应输出 (I have a cat ) 传递到 Decoder。那么在预测第 i 个输出时,就要将第 i+1 之后的单词掩盖住,注意Mask 操作是在 Self-Attention 的 Softmax 之前使用的,下面用 0 1 2 3 4 5 分别表示 “
第一步:是 Decoder 的输入矩阵和 Mask 矩阵,输入矩阵包含 “
第二步:接下来的操作和之前的 Self-Attention 一样,通过输入矩阵X计算得到Q,K,V矩阵。然后计算Q和 K 的乘积 QK(转置)。
第三步:在得到QK之后需要进行 Softmax,计算 attention score,我们在 Softmax 之前需要使用Mask矩阵遮挡住每一个单词之后的信息,遮挡操作如下:
得到 Mask QK 之后在 Mask QK上进行 Softmax,每一行的和都为 1。但是单词 0 在单词 1, 2, 3, 4 上的 attention score 都为 0。
第四步:使用 Mask QK与矩阵 V相乘,得到输出 Z,则单词 1 的输出向量 Z1是只包含单词 1 信息的。
第五步:通过上述步骤就可以得到一个 Mask Self-Attention 的输出矩阵 Zi ,然后和 Encoder 类似,通过 Multi-Head Attention 拼接多个输出Zi,然后计算得到第一个 Multi-Head Attention 的输出Z,Z与输入X维度一样。
Decoder block 第二个 Multi-Head Attention 变化不大, 主要的区别在于其中 Self-Attention 的 K, V矩阵不是使用 上一个 Decoder block 的输出计算的,而是使用 Encoder 的编码信息矩阵 C 计算的。
根据 Encoder 的输出 C计算得到 K, V,根据上一个 Decoder block 的输出 Z 计算 Q (如果是第一个 Decoder block 则使用输入矩阵 X 进行计算),后续的计算方法与之前描述的一致。
这样做的好处是在 Decoder 的时候,每一位单词都可以利用到 Encoder 所有单词的信息 (这些信息无需 Mask)。
例如在解码第1个时刻时,首先Q通过与K进行交互得到权重向量,此时可以看做是Q(待解码向量)在K(本质上也就是Memory)中查询Memory中各个位置与Q有关的信息;然后将权重向量与V进行运算得到解码向量,此时这个解码向量可以看作是考虑了Memory中各个位置编码信息的输出向量,也就是说它包含了在解码当前时刻时应该将注意力放在Memory中哪些位置上的信息。
Decoder block 最后的部分是利用 Softmax 预测下一个单词,在之前的网络层我们可以得到一个最终的输出 Z,因为 Mask 的存在,使得单词 0 的输出 Z0 只包含单词 0 的信息,如下:
Softmax 根据输出矩阵的每一行预测下一个单词:
这就是 Decoder block 的定义,与 Encoder 一样,Decoder 是由多个 Decoder block 组合而成。