- 国外7个最佳大语言模型 (LLM) API推荐
幂简集成
API新理念语言模型人工智能自然语言处理
大型语言模型(LLM)API将彻底改变我们处理语言的方式。在深度学习和机器学习算法的支持下,LLMAPI提供了前所未有的自然语言理解能力。通过利用这些新的API,开发人员现在可以创建能够以前所未有的方式理解和响应书面文本的应用程序。下面,我们将比较从Bard到ChatGPT、PaLM等市场上顶级LLMAPI。我们还将探讨整合这些LLM的潜在用例,并考虑其对语言处理的影响。什么是大语言模型(LLM)
- 二分查找算法在有序数组中的解题分析与优化
带给我一点小幸运
算法
摘要本文深入剖析二分查找算法在有序数组中的应用,详细阐述其基本原理、实现步骤与时间复杂度,通过实际案例展示其解题过程,并针对算法在实际应用中的常见问题提出优化策略,旨在帮助读者全面掌握二分查找算法,提升解决相关问题的能力。一、引言在计算机科学领域,查找算法是解决众多问题的基础。二分查找算法作为一种高效的查找方法,在有序数组的查找场景中具有显著优势。随着数据规模的不断增大,二分查找算法相较于其他查找
- 【NLP】 API在大语言模型中的应用
Nerous_
深度学习自然语言处理语言模型人工智能
大语言模型(LargeLanguageModels,LLMs)通过API(应用程序接口)为开发者提供了便捷的调用方式,使其能够快速集成自然语言处理能力到各类应用中。以下是API在LLM中的核心应用场景及技术实现细节:一、核心应用场景自然语言理解与生成应用示例:智能客服:解析用户问题并生成回复(如ChatGPTAPI)。内容创作:自动生成文章、广告文案或代码(如OpenAI的GPT-4)。技术实现:
- 【数据治理】数据湖治理实践:腾讯云数据湖元数据实践指南
菜鸟蜀黍
数据治理大数据
最近数据湖非常的火,但是一旦没弄好,就会变成“数据沼泽”。如何避免“数据湖”变成“数据沼泽”呢?最好的办法就是治理先行。本文的内容主要包括四部分:1、数据湖背景概述,介绍腾讯数据湖的整体架构;2、数据湖统一元数据模块的详细架构实现;3、介绍腾讯云上元数据多租户的设计模式;4、介绍统一元数据的两大核心能力:在线数据目录和离线数据治理的功能。01什么是数据湖随着Snowflake公司股价高歌猛进和各大
- 存算一体与存算分离:架构设计的深度解析与实现方案
克里斯蒂亚诺罗纳尔多阿维罗
大数据数据库
随着数据量的不断增大和对计算能力的需求日益提高,存算一体作为一种新型架构设计理念,在大数据处理、云计算和人工智能等领域正逐步引起广泛关注。在深入探讨存算一体之前,我们需要先了解存储和计算的基本概念,以及存算分离和存算一体之间的区别。什么是存算一体?存算一体,顾名思义,是将数据存储与计算资源紧密结合,形成一个统一的架构。在这种架构下,存储和计算不仅在物理层面上结合,更在架构设计上深度融合。具体来说,
- Kafka深度解析
GarfieldEr007
Kafka/MQKafka深度解析MQ
原创文章,转载请务必将下面这段话置于文章开头处(保留超链接)。本文转发自Jason’sBlog,原文链接http://www.jasongj.com/2015/01/02/Kafka深度解析背景介绍Kafka简介Kafka是一种分布式的,基于发布/订阅的消息系统。主要设计目标如下:以时间复杂度为O(1)的方式提供消息持久化能力,即使对TB级以上数据也能保证常数时间的访问性能高吞吐率。即使在非常廉价
- 【赵渝强老师】达梦数据库MPP集群的架构
数据库信创
为了支持海量数据存储和处理等方面的需求,为高端数据仓库提供解决方案,达梦数据库提供了大规模并行处理MPP架构,以极低的成本代价,提供高性能的并行计算。通过使用MPP可以解决以下问题:需要较高的系统性能支持以支持大量的复杂查询操作硬件束缚对数据库响应能力的影响降低数据库成本视频讲解如下:https://www.bilibili.com/video/BV1dBftYoEkk/?aid=11386961
- 机器学习是怎么一步一步由神经网络发展到今天的Transformer架构的?
yuanpan
机器学习神经网络transformer
机器学习和神经网络的发展经历了一系列重要的架构和技术阶段。以下是更全面的总结,涵盖了从早期神经网络到卷积神经网络之前的架构演变:1.早期神经网络:感知机(Perceptron)时间:1950年代末至1960年代。背景:感知机由FrankRosenblatt提出,是第一个具有学习能力的神经网络模型。它由单层神经元组成,可以用于简单的二分类任务。特点:输入层和输出层之间直接连接,没有隐藏层。使用简单的
- 关于神经网络中的正则化
文弱_书生
乱七八糟神经网络人工智能深度学习
神经网络训练中的正则化正则化(Regularization)是神经网络训练中的一个关键技术,主要用于防止模型过拟合(overfitting),提高泛化能力。1.为什么需要正则化?在神经网络训练过程中,模型的目标是找到能在训练数据上表现良好的参数,同时也能泛化到未见过的数据。如果一个模型过于复杂(如参数过多、层数过深),它可能会记住训练数据中的噪声,而不是学习数据的本质模式。这种情况称为过拟合(ov
- Java Web开发技术解析:从基础到实践的全栈指南
以恒1
java前端开发语言
JavaWeb开发技术解析:从基础到实践的全栈指南在互联网技术演进中,JavaWeb凭借其跨平台特性、成熟的生态系统和强大的企业级服务能力,成为构建动态Web应用的核心技术栈。本文从技术组成、开发工具、实战应用三个维度,全面解析JavaWeb的完整技术体系,并结合最新行业实践探讨其演进方向。一、JavaWeb的核心技术组成JavaWeb开发以Servlet和JSP为基石,通过分层架构实现动态网页生
- 谷歌:对比学习将LLM转为嵌入模型
大模型任我行
大模型-成熟基座人工智能自然语言处理语言模型论文笔记
标题:GeminiEmbedding:GeneralizableEmbeddingsfromGemini来源:arXiv,2503.07891摘要在本报告中,我们介绍了Gemini嵌入,这是一种最先进的嵌入模型,它利用了Gemini、Google最有能力的大型语言模型的力量。利用Gemini固有的多语言和代码理解能力,GeminiEmbedding为跨越多种语言和文本模式的文本生成高度可概括的嵌入
- 关于kafka常见的问题小结
BAStriver
#Kafka中间件kafka分布式
目录1.Kafka怎么避免重复消费1.1什么时候出现重复消费1.2如何处理重复消费问题2.Kafka怎么保证消息不丢失2.1Producer2.2Broker2.3Consumer3.Kafka怎么保证消息消费的顺序最近面试遇到一些常见kafka问题,所以做一下总结。1.Kafka怎么避免重复消费1.1什么时候出现重复消费1)Kafka的broker上存储的消息都有一个offset作为标记,然后K
- MCP服务器:AI智能体的新时代连接标准
真挺乐
人工智能
在AI技术的不断发展中,MCP(ModelContextProtocol,模型上下文协议)正成为AI智能体与外部系统交互的新标准。MCP的目标是提供一个统一的方法,让AI智能体能够安全、高效地访问各种数据源、API接口和系统工具,从而扩展其能力,提升智能化水平。本文将深入探讨MCP服务器的架构、优势及其在现实世界中的应用。什么是MCP服务器?MCP服务器是MCP架构中的关键组件,它们充当AI智能体
- 领域驱动设计(DDD)与MVC架构:理念对比与架构选择
以恒1
mvc架构
领域驱动设计(DDD)与MVC架构:理念对比与架构选择一、架构之争的本质:业务复杂度驱动技术演进在软件开发领域,没有银弹式的完美架构,只有适合当前业务场景的合理选择。MVC与DDD的区别本质上是业务复杂度与架构响应能力的匹配问题。让我们通过一个真实案例展开思考:案例背景某金融科技公司初期采用MVC架构开发支付系统,随着业务扩展,新增跨境支付、分账系统、风控规则等功能后,代码库逐渐演变成"大泥球"架
- 第二十九篇 数据仓库与商务智能:技术演进与前沿趋势深度解析
随缘而动,随遇而安
数据库数据仓库大数据数据库架构数据库开发
声明:文章内容仅供参考,需仔细甄别。文中技术名称属相关方商标,仅作技术描述;代码示例为交流学习用途,部分参考开源文档(Apache2.0/GPLv3);案例数据已脱敏,技术推荐保持中立;法规解读仅供参考,请以《网络安全法》《数据安全法》官方解释为准。目录一、核心差异:技术定位与实现路径1.1核心能力矩阵二、协同关系:现代数据供应链的双引擎2.1数据价值链协同2.2典型技术栈集成三、前沿技术动态(2
- 【工具】gdb使用详细介绍
努力努力再努力~~
linux疑难问题排查实战gdblinux问题调试
linux问题排查实战专栏,分享了作为公司专家,在解决内存、性能、各类死机等疑难问题的排查经验,认真学习可以让你在日后工作中大放光彩。前言在工作中,无论是学习代码流程还是问题的定位,GDB都显得尤为重要,多掌握一些命令可以提升我们的效率和解决问题的能力;按照我的理解,对GDB的掌握程度可以分为三种人:基础命令,大家都知道相对高阶一点的,少数人了解,掌握之后可以提升调试解决问题的效率需要结合反汇编、
- Bell-1量子计算机分析:开启量子计算2.0时代的创新引擎
Allen_Lyb
行业智库分析与报告量子计算与量子学习量子计算
Bell-1量子计算机:开启量子计算2.0时代的创新引擎一、引言1.1研究背景在当今科技飞速发展的时代,量子计算作为前沿领域,正深刻地改变着科技格局,引领新一轮科技革命与产业变革。自20世纪80年代量子计算概念被提出以来,历经多年的理论探索与技术攻坚,已取得了众多突破性进展。从最初理论设想的提出,到逐步构建出量子计算机,每一次进展都吸引着全球科学界和产业界的高度关注,其发展历程见证了人类对计算能力
- 《深度剖析:BERT与GPT——自然语言处理架构的璀璨双星》
人工智能深度学习
在自然语言处理(NLP)的广袤星空中,BERT(BidirectionalEncoderRepresentationsfromTransformers)与GPT(GenerativePretrainedTransformer)系列模型宛如两颗最为耀眼的星辰,引领着NLP技术不断迈向新的高度。它们基于独特的架构设计,以强大的语言理解与生成能力,彻底革新了NLP的研究与应用范式,成为学界和业界竞相探索
- 【FAQ】HarmonyOS SDK 闭源开放能力 —Push Kit(10)
1.问题描述:离线推送,锁屏的时候没有弹出消息,只有下拉在通知中心里面显示。请问是否是正常的?解决方案:检查一下是否存在图片风控:https://developer.huawei.com/consumer/cn/doc/harmonyos-refere...2.问题描述:1.请问纯鸿蒙系统的远程推送,自分配如何配置?2、纯鸿蒙系统的远程推送,有没有高透传?3、Android华为推送如果切到鸿蒙推送
- 小结:PIM-SM/DM
flying robot
HCIA/HCIP笔记
PIM-DM和PIM-SM两种模式的“组播转发树建立过程”。这俩的工作机制差异很大,适合不同的场景。✅1.PIM-DM(DenseMode)——稠密模式建立过程PIM-DM是“flood&prune”机制,先泛洪再裁剪流程:源发送数据多播源S开始向组播组G发送数据。路由器泛洪(Flood)源直接将数据泛洪到所有启用了PIM-DM的接口。网络内的所有PIM路由器收到组播数据,默认都向下游转发。下游无
- 硬件NAS将成为电子垃圾?
DeepSeek+NAS
家用NASWinNAS飞牛NAS人工智能安卓NAS
随着人工智能(AI)技术的快速发展,传统的NAS设备正面临一场深刻的变革。过去,NAS的主要功能是提供数据存储和共享服务,但在AI时代,单纯的存储功能已无法满足用户需求。未来的NAS必须集成本地AI能力,才能成为真正的AI-NAS。然而,当前市场上的NAS产品硬件配置普遍较低,无法支持本地AI的运行。因此,现有的硬件NAS在三年内可能会被淘汰,取而代之的将是集成了AI和NAS功能的家用AI服务器。
- Python 正则表达式小结1
大收藏家
Python正则表达式python
[声明]:本文参考了白夜黑雨老师的网页讲解。如有侵权,请与我联系!!!Python正则表达式小结11.正则表达式验证2.特殊元字符及含义3匹配某种字符类型4.正则表达式举例大收藏家说1.正则表达式验证提供两个网站用于正则表达式的验证,可以敲入文本与正则表达式。通过该网站,验证正则表达式的正确性。非常好用!英文网站中文网站2.特殊元字符及含义元字符含义.表示要匹配除了换行符之外的任何单个字符*星号-
- python离线语音转文本_使用Python将语音转换为文本的方法
weixin_39760619
python离线语音转文本
使用Python将语音转换为文本的方法,语音,转换为,文本,您的,麦克风使用Python将语音转换为文本的方法易采站长站,站长之家为您整理了使用Python将语音转换为文本的方法的相关内容。语音识别是计算机软件识别口语中的单词和短语,并将其转换为可读文本的能力。那么如何在Python中将语音转换为文本?如何使用SpeechRecognition库在Python中将语音转换为文本?我们不需要从头开始
- CVPR 2024 | 低分辨率引领方向:通过自监督学习提升超分辨率的泛化能力
小白学视觉
计算机顶会顶刊论文解读计算机视觉深度学习CVPR计算机顶会论文解读
论文信息题目:Low-ResLeadstheWay:ImprovingGeneralizationforSuper-ResolutionbySelf-SupervisedLearning低分辨率引领方向:通过自监督学习提升超分辨率的泛化能力作者:HaoyuChen,WenboLi,JinjinGu,JingjingRen,HaozeSun,XueyiZou,ZhensongZhang,Youlia
- YOLOv12优化:图像去噪 | AAAI2025 Transformer |一种基于Transformer的盲点网络(TBSN)架构 ,结合空间和通道自注意力层来增强网络能力
AI小怪兽
YOLOv12魔术师YOLOtransformer深度学习人工智能python
提出了一种基于Transformer的盲点网络(TBSN)架构,通过分析和重新设计Transformer运算符以满足盲点要求。TBSN遵循扩张BSN的架构原则,并结合空间和通道自注意力层来增强网络能力。如何使用:1)结合C3k2二次创新使用;2)结合A2C2f二次创新使用;亮点包括:1.提出了一种新的基于Transformer的盲点网络(TBSN)架构;2.引入了知识蒸馏策略来提高计算效率;3.在
- C++小课堂——friend友元
New_Teen
C++c++笔记开发语言学习
文章目录1.友元函数2.友元类3.友元成员函数友元关系不存在传递性友元小结在C++中,friend关键字用于声明友元(friend)。友元是一种机制,允许某个函数(可以是其它类的成员函数,或者是某个外部函数)或类访问另一个类的私有成员。friend关键字可以用于函数、类、或整个类的成员函数。一般来说,最好在类定义开始或结束前的位置集中声明友元。1.友元函数classMyClass{private:
- 架构设计的灵魂交响曲:系统设计各维度的深度解析与实战指南
领码科技
IT职场技能篇架构设计系统设计功能模块模型驱动协同设计
引言:系统设计的背景与重要性在快速变化的技术环境中,数字化转型成为企业生存与发展的核心驱动力。系统设计能力不仅是技术团队的核心竞争力,也是推动业务创新和提升整体效率的关键因素。根据Gartner的研究,超过70%的数字化转型项目未能实现预期结果,这强调了有效系统设计的重要性。企业需通过科学合理的系统设计来应对市场变化、用户需求和技术发展,从而实现更高的业务价值。文章将深入探讨架构设计的各个维度,通
- Docker Compose 和 Kubernetes(K8s)对比
孽小倩
docker容器dockerk8skubernetes
DockerCompose和Kubernetes(K8s)在某些方面有相似的功能,但它们的核心用途和适用场景不同。以下是它们的主要区别和联系:1.DockerCompose和Kubernetes的区别对比项DockerComposeKubernetes(K8s)核心作用管理多个Docker容器管理容器编排(大规模应用)适用环境本地开发、测试环境生产环境、大规模集群容器编排能力基础编排(启动多个容器
- 智见未来:多大模型协同的数据分析新范式
一ge科研小菜菜
人工智能大数据人工智能大数据
个人主页:一ge科研小菜鸡-CSDN博客期待您的关注1.引言随着大语言模型(LLM)的快速发展,ChatGPT、DeepSeek、Grok等AI模型在数据分析和洞察生成方面展现出巨大潜力。利用多个LLM的协同能力,可以增强数据分析的多角度解读、减少单一模型的偏差,并优化洞察生成的深度和精准度。本文探讨如何结合多个LLM,在数据分析领域实现更可靠的洞察生成,并提供具体的策略、方法和应用场景。2.主要
- 探索 ESP32:物联网时代的全能微控制器
菜只因C
物联网
引言:从ESP8266到ESP32的进化之路在物联网(IoT)蓬勃发展的今天,嵌入式设备需要兼具高性能、低功耗和联网能力。乐鑫科技(RobinLi)推出的ESP32系列芯片,正是这一需求下的产物。自2016年发布以来,ESP32凭借其卓越的综合性能,迅速成为物联网开发者的首选平台。本文将从硬件架构、核心功能、开发生态到实际应用,全面解析这款"物联网心脏"的奥秘。一、ESP32的硬件架构解析1.1双
- [星球大战]阿纳金的背叛
comsci
本来杰迪圣殿的长老是不同意让阿纳金接受训练的.........
但是由于政治原因,长老会妥协了...这给邪恶的力量带来了机会
所以......现代的地球联邦接受了这个教训...绝对不让某些年轻人进入学院
- 看懂它,你就可以任性的玩耍了!
aijuans
JavaScript
javascript作为前端开发的标配技能,如果不掌握好它的三大特点:1.原型 2.作用域 3. 闭包 ,又怎么可以说你学好了这门语言呢?如果标配的技能都没有撑握好,怎么可以任性的玩耍呢?怎么验证自己学好了以上三个基本点呢,我找到一段不错的代码,稍加改动,如果能够读懂它,那么你就可以任性了。
function jClass(b
- Java常用工具包 Jodd
Kai_Ge
javajodd
Jodd 是一个开源的 Java 工具集, 包含一些实用的工具类和小型框架。简单,却很强大! 写道 Jodd = Tools + IoC + MVC + DB + AOP + TX + JSON + HTML < 1.5 Mb
Jodd 被分成众多模块,按需选择,其中
工具类模块有:
jodd-core &nb
- SpringMvc下载
120153216
springMVC
@RequestMapping(value = WebUrlConstant.DOWNLOAD)
public void download(HttpServletRequest request,HttpServletResponse response,String fileName) {
OutputStream os = null;
InputStream is = null;
- Python 标准异常总结
2002wmj
python
Python标准异常总结
AssertionError 断言语句(assert)失败 AttributeError 尝试访问未知的对象属性 EOFError 用户输入文件末尾标志EOF(Ctrl+d) FloatingPointError 浮点计算错误 GeneratorExit generator.close()方法被调用的时候 ImportError 导入模块失
- SQL函数返回临时表结构的数据用于查询
357029540
SQL Server
这两天在做一个查询的SQL,这个SQL的一个条件是通过游标实现另外两张表查询出一个多条数据,这些数据都是INT类型,然后用IN条件进行查询,并且查询这两张表需要通过外部传入参数才能查询出所需数据,于是想到了用SQL函数返回值,并且也这样做了,由于是返回多条数据,所以把查询出来的INT类型值都拼接为了字符串,这时就遇到问题了,在查询SQL中因为条件是INT值,SQL函数的CAST和CONVERST都
- java 时间格式化 | 比较大小| 时区 个人笔记
7454103
javaeclipsetomcatcMyEclipse
个人总结! 不当之处多多包含!
引用 1.0 如何设置 tomcat 的时区:
位置:(catalina.bat---JAVA_OPTS 下面加上)
set JAVA_OPT
- 时间获取Clander的用法
adminjun
Clander时间
/**
* 得到几天前的时间
* @param d
* @param day
* @return
*/
public static Date getDateBefore(Date d,int day){
Calend
- JVM初探与设置
aijuans
java
JVM是Java Virtual Machine(Java虚拟机)的缩写,JVM是一种用于计算设备的规范,它是一个虚构出来的计算机,是通过在实际的计算机上仿真模拟各种计算机功能来实现的。Java虚拟机包括一套字节码指令集、一组寄存器、一个栈、一个垃圾回收堆和一个存储方法域。 JVM屏蔽了与具体操作系统平台相关的信息,使Java程序只需生成在Java虚拟机上运行的目标代码(字节码),就可以在多种平台
- SQL中ON和WHERE的区别
avords
SQL中ON和WHERE的区别
数据库在通过连接两张或多张表来返回记录时,都会生成一张中间的临时表,然后再将这张临时表返回给用户。 www.2cto.com 在使用left jion时,on和where条件的区别如下: 1、 on条件是在生成临时表时使用的条件,它不管on中的条件是否为真,都会返回左边表中的记录。
- 说说自信
houxinyou
工作生活
自信的来源分为两种,一种是源于实力,一种源于头脑.实力是一个综合的评定,有自身的能力,能利用的资源等.比如我想去月亮上,要身体素质过硬,还要有飞船等等一系列的东西.这些都属于实力的一部分.而头脑不同,只要你头脑够简单就可以了!同样要上月亮上,你想,我一跳,1米,我多跳几下,跳个几年,应该就到了!什么?你说我会往下掉?你笨呀你!找个东西踩一下不就行了吗?
无论工作还
- WEBLOGIC事务超时设置
bijian1013
weblogicjta事务超时
系统中统计数据,由于调用统计过程,执行时间超过了weblogic设置的时间,提示如下错误:
统计数据出错!
原因:The transaction is no longer active - status: 'Rolling Back. [Reason=weblogic.transaction.internal
- 两年已过去,再看该如何快速融入新团队
bingyingao
java互联网融入架构新团队
偶得的空闲,翻到了两年前的帖子
该如何快速融入一个新团队,有所感触,就记下来,为下一个两年后的今天做参考。
时隔两年半之后的今天,再来看当初的这个博客,别有一番滋味。而我已经于今年三月份离开了当初所在的团队,加入另外的一个项目组,2011年的这篇博客之后的时光,我很好的融入了那个团队,而直到现在和同事们关系都特别好。大家在短短一年半的时间离一起经历了一
- 【Spark七十七】Spark分析Nginx和Apache的access.log
bit1129
apache
Spark分析Nginx和Apache的access.log,第一个问题是要对Nginx和Apache的access.log文件进行按行解析,按行解析就的方法是正则表达式:
Nginx的access.log解析正则表达式
val PATTERN = """([^ ]*) ([^ ]*) ([^ ]*) (\\[.*\\]) (\&q
- Erlang patch
bookjovi
erlang
Totally five patchs committed to erlang otp, just small patchs.
IMO, erlang really is a interesting programming language, I really like its concurrency feature.
but the functional programming style
- log4j日志路径中加入日期
bro_feng
javalog4j
要用log4j使用记录日志,日志路径有每日的日期,文件大小5M新增文件。
实现方式
log4j:
<appender name="serviceLog"
class="org.apache.log4j.RollingFileAppender">
<param name="Encoding" v
- 读《研磨设计模式》-代码笔记-桥接模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 个人觉得关于桥接模式的例子,蜡笔和毛笔这个例子是最贴切的:http://www.cnblogs.com/zhenyulu/articles/67016.html
* 笔和颜色是可分离的,蜡笔把两者耦合在一起了:一支蜡笔只有一种
- windows7下SVN和Eclipse插件安装
chenyu19891124
eclipse插件
今天花了一天时间弄SVN和Eclipse插件的安装,今天弄好了。svn插件和Eclipse整合有两种方式,一种是直接下载插件包,二种是通过Eclipse在线更新。由于之前Eclipse版本和svn插件版本有差别,始终是没装上。最后在网上找到了适合的版本。所用的环境系统:windows7JDK:1.7svn插件包版本:1.8.16Eclipse:3.7.2工具下载地址:Eclipse下在地址:htt
- [转帖]工作流引擎设计思路
comsci
设计模式工作应用服务器workflow企业应用
作为国内的同行,我非常希望在流程设计方面和大家交流,刚发现篇好文(那么好的文章,现在才发现,可惜),关于流程设计的一些原理,个人觉得本文站得高,看得远,比俺的文章有深度,转载如下
=================================================================================
自开博以来不断有朋友来探讨工作流引擎该如何
- Linux 查看内存,CPU及硬盘大小的方法
daizj
linuxcpu内存硬盘大小
一、查看CPU信息的命令
[root@R4 ~]# cat /proc/cpuinfo |grep "model name" && cat /proc/cpuinfo |grep "physical id"
model name : Intel(R) Xeon(R) CPU X5450 @ 3.00GHz
model name :
- linux 踢出在线用户
dongwei_6688
linux
两个步骤:
1.用w命令找到要踢出的用户,比如下面:
[root@localhost ~]# w
18:16:55 up 39 days, 8:27, 3 users, load average: 0.03, 0.03, 0.00
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
- 放手吧,就像不曾拥有过一样
dcj3sjt126com
内容提要:
静悠悠编著的《放手吧就像不曾拥有过一样》集结“全球华语世界最舒缓心灵”的精华故事,触碰生命最深层次的感动,献给全世界亿万读者。《放手吧就像不曾拥有过一样》的作者衷心地祝愿每一位读者都给自己一个重新出发的理由,将那些令你痛苦的、扛起的、背负的,一并都放下吧!把憔悴的面容换做一种清淡的微笑,把沉重的步伐调节成春天五线谱上的音符,让自己踏着轻快的节奏,在人生的海面上悠然漂荡,享受宁静与
- php二进制安全的含义
dcj3sjt126com
PHP
PHP里,有string的概念。
string里,每个字符的大小为byte(与PHP相比,Java的每个字符为Character,是UTF8字符,C语言的每个字符可以在编译时选择)。
byte里,有ASCII代码的字符,例如ABC,123,abc,也有一些特殊字符,例如回车,退格之类的。
特殊字符很多是不能显示的。或者说,他们的显示方式没有标准,例如编码65到哪儿都是字母A,编码97到哪儿都是字符
- Linux下禁用T440s,X240的一体化触摸板(touchpad)
gashero
linuxThinkPad触摸板
自打1月买了Thinkpad T440s就一直很火大,其中最让人恼火的莫过于触摸板。
Thinkpad的经典就包括用了小红点(TrackPoint)。但是小红点只能定位,还是需要鼠标的左右键的。但是自打T440s等开始启用了一体化触摸板,不再有实体的按键了。问题是要是好用也行。
实际使用中,触摸板一堆问题,比如定位有抖动,以及按键时会有飘逸。这就导致了单击经常就
- graph_dfs
hcx2013
Graph
package edu.xidian.graph;
class MyStack {
private final int SIZE = 20;
private int[] st;
private int top;
public MyStack() {
st = new int[SIZE];
top = -1;
}
public void push(i
- Spring4.1新特性——Spring核心部分及其他
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- 配置HiveServer2的安全策略之自定义用户名密码验证
liyonghui160com
具体从网上看
http://doc.mapr.com/display/MapR/Using+HiveServer2#UsingHiveServer2-ConfiguringCustomAuthentication
LDAP Authentication using OpenLDAP
Setting
- 一位30多的程序员生涯经验总结
pda158
编程工作生活咨询
1.客户在接触到产品之后,才会真正明白自己的需求。
这是我在我的第一份工作上面学来的。只有当我们给客户展示产品的时候,他们才会意识到哪些是必须的。给出一个功能性原型设计远远比一张长长的文字表格要好。 2.只要有充足的时间,所有安全防御系统都将失败。
安全防御现如今是全世界都在关注的大课题、大挑战。我们必须时时刻刻积极完善它,因为黑客只要有一次成功,就可以彻底打败你。 3.
- 分布式web服务架构的演变
自由的奴隶
linuxWeb应用服务器互联网
最开始,由于某些想法,于是在互联网上搭建了一个网站,这个时候甚至有可能主机都是租借的,但由于这篇文章我们只关注架构的演变历程,因此就假设这个时候已经是托管了一台主机,并且有一定的带宽了,这个时候由于网站具备了一定的特色,吸引了部分人访问,逐渐你发现系统的压力越来越高,响应速度越来越慢,而这个时候比较明显的是数据库和应用互相影响,应用出问题了,数据库也很容易出现问题,而数据库出问题的时候,应用也容易
- 初探Druid连接池之二——慢SQL日志记录
xingsan_zhang
日志连接池druid慢SQL
由于工作原因,这里先不说连接数据库部分的配置,后面会补上,直接进入慢SQL日志记录。
1.applicationContext.xml中增加如下配置:
<bean abstract="true" id="mysql_database" class="com.alibaba.druid.pool.DruidDataSourc