基于双向LSTM和迁移学习的seq2seq核心实体识别

http://spaces.ac.cn/archives/3942/

暑假期间做了一下百度和西安交大联合举办的核心实体识别竞赛,最终的结果还不错,遂记录一下。模型的效果不是最好的,但是胜在“端到端”,迁移性强,估计对大家会有一定的参考价值。

比赛的主题是“核心实体识别”,其实有两个任务:核心识别 + 实体识别。这两个任务虽然有关联,但在传统自然语言处理程序中,一般是将它们分开处理的,而这次需要将两个任务联合在一起。如果只看“核心识别”,那就是传统的关键词抽取任务了,不同的是,传统的纯粹基于统计的思路(如TF-IDF抽取)是行不通的,因为单句中的核心实体可能就只出现一次,这时候统计估计是不可靠的,最好能够从语义的角度来理解。我一开始就是从“核心识别”入手,使用的方法类似QA系统:

1、将句子分词,然后用Word2Vec训练词向量;

2、用卷积神经网络(在这种抽取式问题上,CNN效果往往比RNN要好)卷积一下,得到一个与词向量维度一样的输出;

3、损失函数就是输出向量跟训练样本的核心词向量的cos值。

 

于是要找到句子的核心词,我只需要给每个句子计算一个输出向量,然后比较它与句子中每个词的向量的cos值,降序排列就行了。这个方法的明显优势是运行速度很快。最终,我用这个模型在公开评测集上做到了0.35的准确率,后来感觉难以提升,就放弃了这个思路。

基于双向LSTM和迁移学习的seq2seq核心实体识别_第1张图片

为什么放弃?事实上,这个思路在“核心识别”这部分做得很好,但它的致命缺陷就是:它依赖于分词效果。分词系统往往会把一些长词构成的核心实体切开,比如“朱家花园”切分为“朱家/花园”,切分后要进行整合就难得多了。于是,我参照《【中文分词系列】 4. 基于双向LSTM的seq2seq字标注》一文,用词标注的思路来做,因为这个思路不明显依赖于分词效果。最终我用这个思路做到了0.56的准确率。

大概步骤是:

1、将句子分词,然后用Word2Vec训练词向量;

2、将输出转化为5tag标注问题:b(核心实体首词)、m(核心实体中)、e(核心实体末词)、s(单词成核心实体)、x(非核心实体部分);

3、用双层双向LSTM进行预测,用viterbi算法进行标注。

最后,需要一提的是,根据这种思路,甚至可以不分词就来做核心实体识别,但总的来说,还是分了词的效果会好一些,并且分词有利于降低句子长度(100字的句子分词后变成50词的句子),这有利于减少模型的参数个数。这里我们只需要一个简单的分词系统即可,并且不需要它们内置的新词发现功能。

迁移学习

但是,用这个思路之前我是很不确定它最终的效果的。主要原因是:百度给出了1.2万的训练样本,但却有20万的测试样本。比例如此悬殊,效果似乎很难好起来。此外,有5个tag,其中相比x这个tag,其他四个tag的数量是很少的,只有1.2万的训练样本,似乎存在数据不充分的问题。

当然,实践是检验真理的唯一标准。这个思路的首次测试就达到了0.42的准确率,远高于我前面精心调节了大半个月的CNN思路,于是我就往这个思路继续做下去。在继续做下去之前,我分析了这种思路效果不错的原因。我觉得,主要原因有两个:一个是“迁移学习”,另外一个就是LSTM强大的捕捉语义的能力。

传统数据挖掘的训练模型,是纯粹在训练集上做的。但是我们很难保证,训练集跟测试集是一致的,准确来说,就是很难假设训练集和测试集的分布是一样的。于是乎,即使模型训练效果非常好,测试效果也可能一塌糊涂,这不是过拟合所致,这是训练集和测试集不一致所造成的。

解决(缓解)这个问题的一个思路就是“迁移学习”。迁移学习现在已经是比较综合的建模策略了,在此不详述。一般来说,它有两套方案:

1、在建模前迁移学习,即可以把训练集和测试集放在一起,来学习建模用到的特征,这样得来的特征已经包含了测试集的信息;

2、在建模后迁移学习,即如果测试集的测试效果还不错,比如0.5的准确率,想要提高准确率,可以把测试集连同它的预测结果一起,当做训练样本,跟原来的训练样本一起重新训练模型。

大家可能对第2点比较困惑,测试集的预测结果不是有错的吗?输入错误的结果还能提高准确率?托尔斯泰说过“幸福的家庭都是相似的,不幸的家庭各有各的不幸”,放到这里,我想说的是“正确的答案都是相同的,错误的答案各有各的不同”。也就是说,如果进行第2点训练,测试集中给出的正确答案,效果会累积,因为它们都是正确的(相同的)模式的出来的结果,但是错误的答案各有不同的错误模式,如果模型参数有限,不至于过拟合,那么模型就会抹平这些错误模式,从而倾向于正确的答案。当然,这个理解是否准确,请读者点评。另外,如果得到了新的预测结果,那么可以只取两次相同的预测结果作为训练样本,这样的正确答案的比例就更高了。

在这个比赛中,迁移学习体现在:

1、用训练语料和测试语料一起训练Word2Vec,使得词向量本捕捉了测试语料的语义;

2、用训练语料训练模型;

3、得到模型后,对测试语料预测,把预测结果跟训练语料一起训练新的模型;

4、用新的模型预测,模型效果会有一定提升;

5、对比两次预测结果,如果两次预测结果都一样,那说明这个预测结果很有可能是对的,用这部分“很有可能是对的”的测试结果来训练模型;

6、用更新的模型预测;

7、如果你愿意,可以继续重复第4、5、6步。

双向LSTM

主要的模型结构:

'''
用最新版本的Keras训练模型,使用GPU加速(我的是GTX 960)
其中Bidirectional函数目前要在github版本才有
'''
from keras.layers import Dense, LSTM, Lambda, TimeDistributed, Input, Masking, Bidirectional from keras.models import Model from keras.utils import np_utils from keras.regularizers import activity_l1 #通过L1正则项,使得输出更加稀疏 sequence = Input(shape=(maxlen, word_size)) mask = Masking(mask_value=0.)(sequence) blstm = Bidirectional(LSTM(64, return_sequences=True), merge_mode='sum')(mask) blstm = Bidirectional(LSTM(32, return_sequences=True), merge_mode='sum')(blstm) output = TimeDistributed(Dense(5, activation='softmax', activity_regularizer=activity_l1(0.01)))(blstm) model = Model(input=sequence, output=output) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) 

就是用了双层的双向LSTM(单层我也试过,多加一层效果好一些),保留LSTM每次的输出,然后对每个输出都做一下softmax,整个过程基本就是分词系统一样了。

基于双向LSTM和迁移学习的seq2seq核心实体识别_第2张图片

当然,这个模型的好坏,很大程度上还取决于词向量的质量。经过多次调试,我发现如下的词向量参数基本是最优的:

word2vec = gensim.models.Word2Vec(dd['words'].append(d['words']), min_count=1, size=word_size, workers=20, iter=20, window=8, negative=8, sg=1) 

也就是说,skip-gram的效果要比cbow要好,负样本采样的模式要比层次softmax要好,负样本的数目要适中,窗口大小也要适中。当然,这个所谓的“最优”,是多次人工调试后,我自己“直观感觉”的,欢迎大家做更多的测试。

关于比赛

百度跟西安交大这个比赛其实去年我也留意到了,但是我去年还是菜鸟水平,没法做那么艰难的任务。今年尝试做了一下,感觉收获颇丰的。

首先,比赛是百度举行的,单凭这点已经很有吸引力了,因为通常感觉如果能得到百度的肯定,那是一件了不起的事情,所以挺期待这类比赛的(希望有时间参加吧),也希望百度的比赛越办越好哈(套话了~)。其次,在这个过程中,我对语言模型的例子、深度网络的搭建与使用等,都有了更加深入的认识了,比如CNN怎么用于语言任务、可以用于哪些语言任务,还有seq2seq的初步使用等。

很碰巧的是,这次是一个自然语言处理任务,上次泰迪杯是一个图像任务,两次加起来,我把自然语言处理和图像的基本任务都做了一遍,心里对这些任务的处理都比较有底了,感觉挺踏实的。

完整代码

说明文件

基于迁移学习和双向LSTM的核心实体识别

==============================================================
总的步骤(在train_and_predict.py中一一对应)
==============================================================

1、训练语料和测试语料都分词,目前用的是结巴分词;
2、转化为5tag标注问题,构建训练标签;
3、训练语料和测试语料一起训练Word2Vec模型;
4、用双层双向LSTM训练标注模型,基于seq2seq的思想;
5、用模型进行预测,预测准确率大约会在0.46~0.52波动;
6、将预测结果当作标签数据,与训练数据一起,重新训练模型;
7、用新模型预测,预测准确率会在0.5~0.55波动;
8、比较两次预测结果,取交集当做标签数据,与训练数据一起,重新训练模型;
9、用新模型预测,预测准确率基本保持在0.53~0.56。

==============================================================
编译环境:
==============================================================

硬件环境:
1、96G内存(事实上用到10G左右)
2、GTX960显卡(GPU加速训练)

软件环境:
1、CentOS 7
2、Python 2.7(以下均为Python第三方库)
3、结巴分词
4、Numpy
5、SciPy
6、Pandas
7、Keras(官方GitHub版本)
8、Gensim
9、H5PY
10、tqdm

==============================================================
文件使用说明:
==============================================================

train_and_predict.py

包含了从训练到预测的整个过程,只要“未开放的验证数据”格式跟“开放的测试数据”opendata_20w格式一样,那么就可以
与train_and_predict.py放在同一目录,然后运行
python train_and_predict.py
就可以完成整个过程,并且会生成一系列文件:

--------------------------------------------------------------
word2vec_words_final.model,word2vec模型

words_seq2seq_final_1.model,首次得到的双层双向LSTM模型
--- result1.txt,首次预测结果文件
--- result1.zip,首次预测结果文件压缩包

words_seq2seq_final_2.model,通过第一次迁移学习后得到的模型
--- result2.txt,再次预测结果文件
--- result2.zip,再次预测结果文件压缩包

words_seq2seq_final_3.model,通过第二次迁移学习后得到的模型
--- result3.txt,再次预测结果文件
--- result3.zip,再次预测结果文件压缩包

words_seq2seq_final_4.model,通过第三次迁移学习后得到的模型
--- result4.txt,再次预测结果文件
--- result4.zip,再次预测结果文件压缩包

words_seq2seq_final_5.model,通过第四次迁移学习后得到的模型
--- result5.txt,再次预测结果文件
--- result5.zip,再次预测结果文件压缩包
---------------------------------------------------------------

==============================================================
思路说明:
==============================================================

迁移学习体现在:
1、用训练语料和测试语料一起训练Word2Vec,使得词向量本捕捉了测试语料的语义;
2、用训练语料训练模型;
3、得到模型后,对测试语料预测,把预测结果跟训练语料一起训练新的模型;
4、用新的模型预测,模型效果会有一定提升;
5、对比两次预测结果,如果两次预测结果都一样,那说明这个预测结果很有可能是对的,用这部分“很有可能是对的”的测试结果来训练模型;
6、用更新的模型预测;
7、如果你愿意,可以继续重复第4、5、6步。

双向LSTM的思路:
1、分词;
2、转换为5tag标注问题(0:非核心实体,1:单词的核心实体,2:多词核心实体的首词,3:多词核心实体的中间部分,4:多词核心实体的末词);
3、通过双向LSTM,直接对输入句子输出预测标注序列;
4、通过viterbi算法来获得标注结果;
5、因为常规的LSTM存在后面的词比前面的词更重要的弊端,因此用双向LSTM。

train_and_predict.py(代码并没整理,仅供测试参考)

#! -*- coding:utf-8 -*-

'''
基于迁移学习和双向LSTM的核心实体识别

迁移学习体现在:
1、用训练语料和测试语料一起训练Word2Vec,使得词向量本捕捉了测试语料的语义;
2、用训练语料训练模型;
3、得到模型后,对测试语料预测,把预测结果跟训练语料一起训练新的模型;
4、用新的模型预测,模型效果会有一定提升;
5、对比两次预测结果,如果两次预测结果都一样,那说明这个预测结果很有可能是对的,用这部分“很有可能是对的”的测试结果来训练模型;
6、用更新的模型预测;
7、如果你愿意,可以继续重复第4、5、6步。

双向LSTM的思路:
1、分词;
2、转换为5tag标注问题(0:非核心实体,1:单词的核心实体,2:多词核心实体的首词,3:多词核心实体的中间部分,4:多词核心实体的末词);
3、通过双向LSTM,直接对输入句子输出预测标注序列;
4、通过viterbi算法来获得标注结果;
5、因为常规的LSTM存在后面的词比前面的词更重要的弊端,因此用双向LSTM。
'''

import numpy as np import pandas as pd import jieba from tqdm import tqdm import re d = pd.read_json('data.json') #训练数据已经被预处理成为标准json格式 d.index = range(len(d)) #重新定义一下索引,当然这只是优化显示效果 word_size = 128 #词向量维度 maxlen = 80 #句子截断长度 ''' 修改分词函数,主要是: 1、英文和数字部分不分词,直接返回; 2、双书名号里边的内容不分词; 3、双引号里边如果是十字以内的内容不分词; 4、超出范围内的字符全部替换为空格; 5、分词使用结巴分词,并关闭新词发现功能。 ''' not_cuts = re.compile(u'([\da-zA-Z \.]+)|《(.*?)》|“(.{1,10})”') re_replace = re.compile(u'[^\u4e00-\u9fa50-9a-zA-Z《》\(\)()“”·\.]') def mycut(s): result = [] j = 0 s = re_replace.sub(' ', s) for i in not_cuts.finditer(s): result.extend(jieba.lcut(s[j:i.start()], HMM=False)) if s[i.start()] in [u'《', u'“']: result.extend([s[i.start()], s[i.start()+1:i.end()-1], s[i.end()-1]]) else: result.append(s[i.start():i.end()]) j = i.end() result.extend(jieba.lcut(s[j:], HMM=False)) return result d['words'] = d['content'].apply(mycut) #分词 def label(k): #将输出结果转换为标签序列 s = d['words'][k] r = ['0']*len(s) for i in range(len(s)): for j in d['core_entity'][k]: if s[i] in j: r[i] = '1' break s = ''.join(r) r = [0]*len(s) for i in re.finditer('1+', s): if i.end() - i.start() > 1: r[i.start()] 

你可能感兴趣的:(人工智能,python,json)