AQS学习:ReentrantLock源码解析

前言

多线程知识中理解了ReentrantLock之后,对于整个AQS也会有大概的理解,后面再去看其它锁的源码就会比较容易。下面带大家一块来学习ReentrantLock源码。

概述

ReentrantLock是可重入的互斥锁,虽然具有与synchronized相同功能,但是会比synchronized更加灵活(具有更多的方法)。ReentrantLock底层基于AbstractQueuedSynchronized。有两种锁方式公平锁和非公平锁,公平锁指线程锁定后会进入队列进行排队等待至获得锁的使用权;而非公平锁指线程锁定后会尝试获取锁,如果获取失败则进入等待队列进行排队。

AQS学习:ReentrantLock源码解析_第1张图片

正文

应用场景

下面有这么一段代码,有10个线程对count进行累加,每个线程累加10000次,那么最终期望的输出值肯定是100000。

 private static  int count = 0;

    private static void inrc() {
       count++;
    }

    public static void main(String[] args) throws InterruptedException {
        for (int i = 0; i < 10; i++) {
            new Thread(() -> {
                for (int a=0;a<10000;a++){
                    inrc();
                }
            }).start();
        }
        TimeUnit.SECONDS.sleep(3);
        System.out.println(count);
    }
    

不加锁的情况,输出会不符合我们的预期。

AQS学习:ReentrantLock源码解析_第2张图片

使用ReentrantLock加锁。

    private static Lock lock = new ReentrantLock();

    private static  int count = 0;

    private static void inrc() {
        try {
            //加锁
            lock.lock();
            count++;
        } catch (Exception e) {
            e.printStackTrace();
        }finally {
            lock.unlock();
        }
    }

    public static void main(String[] args) throws InterruptedException {
        for (int i = 0; i < 10; i++) {
            new Thread(() -> {
                for (int a=0;a<10000;a++){
                    inrc();
                }
            }).start();
        }
        TimeUnit.SECONDS.sleep(3);
        System.out.println(count);
    }

输出结果:符合预期

AQS学习:ReentrantLock源码解析_第3张图片

NonfairSync:lock方法

ReentrantLock默认为非公平锁,从其构造方式中可以看出。

    public ReentrantLock() {
        sync = new NonfairSync();
    }

下面我们来追踪ReentrantLock的lock()方法,由于默认为非公平锁,所以当我们调用lock方法时,实际调用的是NonfairSync的lock方法

    public void lock() {
        sync.lock();
    }

        final void lock() {
        	//尝试通过CAS修改state值,如果此时成功的修改了state的值为1,则证明竞争到了锁资源
            if (compareAndSetState(0, 1))
            		//将线程占用者属性设置为当前线程
                setExclusiveOwnerThread(Thread.currentThread());
            else
            		//如果占用失败,则再次尝试,如果还失败则会加入队列进行等待
                acquire(1);
        }

由于是非公平锁,所以进入该方法时,会先尝试获取锁资源,通过CAS(可以保证原子性,即线程安全)设置state值为1,如果成功设置则是拿到了资源,否则调用acquire方法进行尝试。如果是公平锁的话直接调用acquire()方法;

AQS:acquire方法

    public final void acquire(int arg) {
    //tryAcquire(arg):再次尝试获取锁资源
    //addWaiter(Node.EXCLUSIVE):前面的判断如果获取不到锁资源,则将添加当前线程到队列中进行等待
    //acquireQueued:自旋尝试获取锁资源
    //selfInterrupt():如果当前线程的状态被打断了,则将当前线程打断掉(只有当前线程有权限打断自己所在线程)
        if (!tryAcquire(arg) &&
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
            selfInterrupt();
    }

1、tryAcquire(arg):这里会再次尝试是否能获取到锁资源,有可能当前拥有锁资源的线程就是自己所在的线程,那么这时候是支持锁重入的。

2、acquireQueued(addWaiter(Node.EXCLUSIVE), arg)):添加当前线程到队列中,并以自旋的方式尝试获取锁资源。

3、selfInterrupt():当前线程的状态如果为打断状态,则将当前线程打断掉(只有当前线程有权限打断自己所在线程)

NonfairSync: tryAcquire方法

        protected final boolean tryAcquire(int acquires) {
            return nonfairTryAcquire(acquires);
        }
        final boolean nonfairTryAcquire(int acquires) {
        	 //获取当前线程
            final Thread current = Thread.currentThread();
            //获取state的状态看是否被占有
            int c = getState();
            //如果为0,则代表当前为被占有
            if (c == 0) {
            		//通过CAS方式尝试修改其值进行资源占用
                if (compareAndSetState(0, acquires)) {
                	 //成功则将当前线程为资源拥有者
                    setExclusiveOwnerThread(current);
                    return true;
                }
            }
            //判断资源拥有者与当前线程是否是同个,如果是则将state值进行累加,达到可重入的目的
            else if (current == getExclusiveOwnerThread()) {
                int nextc = c + acquires;
                if (nextc < 0) // overflow
                    throw new Error("Maximum lock count exceeded");
                setState(nextc);
                return true;
            }
            return false;
        }

AQS:addWaiter方法

AQS中的队列结构为双向链表结构,每个节点为node对象,该对象拥有前置节点、后置节点属性;

    private Node addWaiter(Node mode) {
    		//将当前线程封装成node
        Node node = new Node(Thread.currentThread(), mode);
        // Try the fast path of enq; backup to full enq on failure
        //判断链表的尾部节点是否为空,如果为空则证明整个队列没有值
        Node pred = tail;
        if (pred != null) {
        	 //设置当前节点的前置节点
            node.prev = pred;
            //通过CAS的方式将当前节点与上个节点关联起来。通过CAS保证线程安全
            if (compareAndSetTail(pred, node)) {
                pred.next = node;
                return node;
            }
        }
        enq(node);
        return node;
    }

AQS: acquireQueued方法

    final boolean acquireQueued(final Node node, int arg) {
        boolean failed = true;
        try {
            boolean interrupted = false;
            //死循环
            for (;;) {
            		//获取当前线程节点在队列中的前一个线程节点
                final Node p = node.predecessor();
                //判断其是否处于队列头部位置,如果是则代表快轮到自己了,进行尝试获取资源
                if (p == head && tryAcquire(arg)) {
                    setHead(node);
                    p.next = null; // help GC
                    failed = false;
                    return interrupted;
                }
                //判断当前线程的状态是否为等待中,如果是则返回true,不是则将状态设置为等待状态
                if (shouldParkAfterFailedAcquire(p, node) &&
                		//阻塞并返回当前线程是否被打断标识
                    parkAndCheckInterrupt())
                    interrupted = true;
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }

AQS:shouldParkAfterFailedAcquire方法

    private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
        int ws = pred.waitStatus;
        //如果上个节点处于等待状态,则代表当前的线程可以进行阻塞,因为上个线程都没获取资源,肯定不会轮到自己的,可以安心阻塞
        if (ws == Node.SIGNAL)
            /*
             * This node has already set status asking a release
             * to signal it, so it can safely park.
             */
            return true;
        //状态大于0,证明上个线程取消了,需要从队列中往前查一个未取消的
        if (ws > 0) {
            /*
             * Predecessor was cancelled. Skip over predecessors and
             * indicate retry.
             */
            do {
                node.prev = pred = pred.prev;
            } while (pred.waitStatus > 0);
            pred.next = node;
        } else {
            /*
             * waitStatus must be 0 or PROPAGATE.  Indicate that we
             * need a signal, but don't park yet.  Caller will need to
             * retry to make sure it cannot acquire before parking.
             */
             //将当前节点设置为等待状态
            compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
        }
        return false;
    }

AQS:parkAndCheckInterrupt

    private final boolean parkAndCheckInterrupt() {
        LockSupport.park(this);
        return Thread.interrupted();
    }
   public static void park(Object blocker) {
        Thread t = Thread.currentThread();
        setBlocker(t, blocker);
        //调用park方法进行阻塞,这样调用的是native方法,即调用内核态库中的函数
        UNSAFE.park(false, 0L);
        setBlocker(t, null);
    }

AQS:cancelAcquire方法

    private void cancelAcquire(Node node) {
        // Ignore if node doesn't exist
        if (node == null)
            return;
			 //将当前线程置为null,方便gc
        node.thread = null;

        // Skip cancelled predecessors
        //获取上个节点
        Node pred = node.prev;
        while (pred.waitStatus > 0)
            node.prev = pred = pred.prev;

        // predNext is the apparent node to unsplice. CASes below will
        // fail if not, in which case, we lost race vs another cancel
        // or signal, so no further action is necessary.
        Node predNext = pred.next;

        // Can use unconditional write instead of CAS here.
        // After this atomic step, other Nodes can skip past us.
        // Before, we are free of interference from other threads.
        //将线程状态设置为取消
        node.waitStatus = Node.CANCELLED;

        // If we are the tail, remove ourselves.
        //如果当前线程位于队列的最后一个位置,由于取消了,所以要将上个队列位置的线程置为尾部
        if (node == tail && compareAndSetTail(node, pred)) {
            compareAndSetNext(pred, predNext, null);
        } else {
            // If successor needs signal, try to set pred's next-link
            // so it will get one. Otherwise wake it up to propagate.
            
            int ws;
            //这一步只要将上个线程与下个线程进行关联,移除当前线程在队列的位置
            if (pred != head &&
                ((ws = pred.waitStatus) == Node.SIGNAL ||
                 (ws <= 0 && compareAndSetWaitStatus(pred, ws, Node.SIGNAL))) &&
                pred.thread != null) {
                Node next = node.next;
                if (next != null && next.waitStatus <= 0)
                    compareAndSetNext(pred, predNext, next);
            } else {
            		//释放下一个线程阻塞状态
                unparkSuccessor(node);
            }

            node.next = node; // help GC
        }
    }

AQS:unparkSuccessor

    private void unparkSuccessor(Node node) {
        /*
         * If status is negative (i.e., possibly needing signal) try
         * to clear in anticipation of signalling.  It is OK if this
         * fails or if status is changed by waiting thread.
         */
        int ws = node.waitStatus;
        if (ws < 0)
            compareAndSetWaitStatus(node, ws, 0);

        /*
         * Thread to unpark is held in successor, which is normally
         * just the next node.  But if cancelled or apparently null,
         * traverse backwards from tail to find the actual
         * non-cancelled successor.
         */
        Node s = node.next;
        if (s == null || s.waitStatus > 0) {
            s = null;
            for (Node t = tail; t != null && t != node; t = t.prev)
                if (t.waitStatus <= 0)
                    s = t;
        }
        if (s != null)
        		//释放线程的阻塞状态
            LockSupport.unpark(s.thread);
    }

NonfairSync:unlock方法

通过前面的步骤,我们知道处于队列中的线程都处于阻塞状态,持有资源的线程执行完之后,需要调用unlock方法将队列中的下一个线程唤醒,并将自己从队列中进行移除。

    public void unlock() {
        sync.release(1);
    }

AQS:release方法

    public final boolean release(int arg) {
    		//判断是否能释放,因为ReentrantLock是重入锁,每次重入时state会加1,所以如果state-1不等于0的话,需要多次的unlock才能达到释放资源。比如同个线程中调用了两次lock,需要调用两次unlock才能释放资源。
        if (tryRelease(arg)) {
            Node h = head;
            if (h != null && h.waitStatus != 0)
            		//将下个节点唤醒
                unparkSuccessor(h);
            return true;
        }
        return false;
    }

ReentrantLock:tryRelease方法

        protected final boolean tryRelease(int releases) {
        		//将state减一
            int c = getState() - releases;
            if (Thread.currentThread() != getExclusiveOwnerThread())
                throw new IllegalMonitorStateException();
            boolean free = false;
            //如果为0释放资源
            if (c == 0) {
                free = true;
                setExclusiveOwnerThread(null);
            }
            //不为0,证明之前有过重入的情况,需要等该线程的所有unlock方法执行完毕后,state等于0才能释放
            setState(c);
            return free;
        }

AQS:unparkSuccessor方法

    private void unparkSuccessor(Node node) {
        /*
         * If status is negative (i.e., possibly needing signal) try
         * to clear in anticipation of signalling.  It is OK if this
         * fails or if status is changed by waiting thread.
         */
        int ws = node.waitStatus;
        //将当前线程状态设置为0
        if (ws < 0)
            compareAndSetWaitStatus(node, ws, 0);

        /*
         * Thread to unpark is held in successor, which is normally
         * just the next node.  But if cancelled or apparently null,
         * traverse backwards from tail to find the actual
         * non-cancelled successor.
         */
         //查找下个节点,状态不为取消的
        Node s = node.next;
        if (s == null || s.waitStatus > 0) {
            s = null;
            for (Node t = tail; t != null && t != node; t = t.prev)
                if (t.waitStatus <= 0)
                    s = t;
        }
        if (s != null)
        		//唤醒
            LockSupport.unpark(s.thread);
    }

总结

下面画了流程图,帮助大家更好的理解。

非公平锁

AQS学习:ReentrantLock源码解析_第4张图片

公平锁

AQS学习:ReentrantLock源码解析_第5张图片

解锁

AQS学习:ReentrantLock源码解析_第6张图片

你可能感兴趣的:(多线程与高并发,java)