当只有一台机器的情况下,给定时任务分片四个,在机器A启动四个线程,分别处理四个分片的内容
当有两台机器的情况下,分片由两个机器进行分配,机器A负责索引为0,1分片内容,机器B负责2,3分片内容
当有三台机器的时候,情况如图所示
当有四台机器的时候
当有五台机器的时候
当分片消耗资源少的时候,第一种情况和第二种情况没有太大区别,反之,如果消耗资源很大的时候,CPU的利用率效率会降低
分片数建议服务器个数倍数
案例需求
数据库中有一些列的数据,需要对这些数据进行备份操作,备份完之后,修改数据的状态,标记已经备份了
第一步:添加依赖
<dependency>
<groupId>com.alibabagroupId>
<artifactId>druidartifactId>
<version>1.1.10version>
dependency>
<dependency>
<groupId>org.mybatis.spring.bootgroupId>
<artifactId>mybatis-spring-boot-starterartifactId>
<version>1.2.0version>
dependency>
<dependency>
<groupId>mysqlgroupId>
<artifactId>mysql-connector-javaartifactId>
dependency>
第二步:添加配置
spring:
datasource:
url: jdbc:mysql://localhost:3306/elastic-job-demo?serverTimezone=GMT%2B8
driverClassName: com.mysql.cj.jdbc.Driver
type: com.alibaba.druid.pool.DruidDataSource
username: root
password: 2022
第三步:添加实体类
@Data
public class FileCustom {
//唯⼀标识
private Long id;
//⽂件名
private String name;
//⽂件类型
private String type;
//⽂件内容
private String content;
//是否已备份
private Boolean backedUp = false;
public FileCustom(){}
public FileCustom(Long id, String name, String type, String content){
this.id = id;
this.name = name;
this.type = type;
this.content = content;
}
}
第四步:添加任务类
@Autowired
private FileCustomMapper fileCustomMapper;
@Override
public void execute(ShardingContext shardingContext) {
doWork();
}
private void doWork() {
//查询出所有的备份任务
List<FileCustom> fileCustoms = fileCustomMapper.selectAll();
for (FileCustom custom:fileCustoms){
backUp(custom);
}
}
private void backUp(FileCustom custom){
System.out.println("备份的方法名:"+custom.getName()+"备份的类型:"+custom.getType());
System.out.println("=======================");
//模拟进行备份操作
try {
TimeUnit.SECONDS.sleep(1);
} catch (InterruptedException e) {
e.printStackTrace();
}
fileCustomMapper.changeState(custom.getId(),1);
}
}
第五步: 添加任务调度配置
@Bean(initMethod = "init")
public SpringJobScheduler fileScheduler(FileCustomElasticjob job, CoordinatorRegistryCenter registryCenter){
LiteJobConfiguration jobConfiguration = createJobConfiguration(job.getClass(),"0/5 * * * * ?",1);
return new SpringJobScheduler(job,registryCenter,jobConfiguration);
}
第一步:修改任务配置类
@Configuration
public class JobConfig {
@Bean
public static CoordinatorRegistryCenter registryCenter(@Value("${zookeeper.url}") String url, @Value("${zookeeper.groupName}") String groupName) {
ZookeeperConfiguration zookeeperConfiguration = new ZookeeperConfiguration(url, groupName);
//设置节点超时时间
zookeeperConfiguration.setSessionTimeoutMilliseconds(100);
//zookeeperConfiguration("zookeeper地址","项目名")
CoordinatorRegistryCenter regCenter = new ZookeeperRegistryCenter(zookeeperConfiguration);
regCenter.init();
return regCenter;
}
//功能的方法
private static LiteJobConfiguration createJobConfiguration(Class clazz, String corn, int shardingCount,String shardingParam) {
JobCoreConfiguration.Builder jobBuilder = JobCoreConfiguration.newBuilder(clazz.getSimpleName(), corn, shardingCount);
if(!StringUtils.isEmpty(shardingParam)){
jobBuilder.shardingItemParameters(shardingParam);
}
//定义作业核心配置newBuilder("任务名称","corn表达式","分片数量")
JobCoreConfiguration simpleCoreConfig = jobBuilder.build();
// 定义SIMPLE类型配置 cn.wolfcode.MyElasticJob
System.out.println("MyElasticJob.class.getCanonicalName---->"+ MyElasticJob.class.getCanonicalName());
SimpleJobConfiguration simpleJobConfig = new SimpleJobConfiguration(simpleCoreConfig,clazz.getCanonicalName());
//定义Lite作业根配置
LiteJobConfiguration simpleJobRootConfig = LiteJobConfiguration.newBuilder(simpleJobConfig).overwrite(true).build();
return simpleJobRootConfig;
}
@Bean(initMethod = "init")
public SpringJobScheduler fileScheduler(FileCustomElasticjob job, CoordinatorRegistryCenter registryCenter){
LiteJobConfiguration jobConfiguration = createJobConfiguration(job.getClass(),"0/10 * * * * ?",4,"0=text,1=image,2=radio,3=vedio");
return new SpringJobScheduler(job,registryCenter,jobConfiguration);
}
}
第二步:修改任务类
@Component
@Slf4j
public class FileCustomElasticjob implements SimpleJob {
@Autowired
private FileCustomMapper fileCustomMapper;
@Override
public void execute(ShardingContext shardingContext) {
doWork(shardingContext.getShardingParameter());
log.info("线程ID:{},任务的名称:{},任务的参数:{},分片个数:{},分片索引号:{},分片参数:{}",
Thread.currentThread().getId(),
shardingContext.getJobName(),
shardingContext.getJobParameter(),
shardingContext.getShardingTotalCount(),
shardingContext.getShardingItem(),
shardingContext.getShardingParameter());
}
private void doWork(String shardingParameter) {
//查询出所有的备份任务
List<FileCustom> fileCustoms = fileCustomMapper.selectByType(shardingParameter);
for (FileCustom custom:fileCustoms){
backUp(custom);
}
}
private void backUp(FileCustom custom){
System.out.println("备份的方法名:"+custom.getName()+"备份的类型:"+custom.getType());
System.out.println("=======================");
//模拟进行备份操作
try {
TimeUnit.SECONDS.sleep(1);
} catch (InterruptedException e) {
e.printStackTrace();
}
fileCustomMapper.changeState(custom.getId(),1);
}
}
第三步:修改Mapper映射文件
@Mapper
public interface FileCustomMapper {
@Select("select * from t_file_custom where backedUp = 0")
List<FileCustom> selectAll();
@Update("update t_file_custom set backedUp = #{state} where id = #{id}")
int changeState(@Param("id") Long id, @Param("state")int state);
@Select("select * from t_file_custom where backedUp = 0 and type = #{type}")
List<FileCustom> selectByType(String shardingParameter);
}
Dataflow类型的定时任务需要实现Dataflowjob接口,该接口提供2个方法供覆盖,分别用于抓取(fetchData)和处理( processData)数据,我们继续对例子进行改造。
Dataflow类型用于处理数据流,他和SimpleJob不同,它以数据流的方式执行,调用fetchData抓取数据,知道抓取不到数据才停止作业。
定时任务开始的时候,先抓取数据,判断数据是否为空,若不为空则进行处理数据
第一步:创建任务类
@Component
public class FileDataflowJob implements DataflowJob<FileCustom> {
@Autowired
private FileCustomMapper fileCustomMapper;
//抓取数据
@Override
public List<FileCustom> fetchData(ShardingContext shardingContext) {
System.out.println("开始抓取数据......");
List<FileCustom> fileCustoms = fileCustomMapper.selectLimit(2);
return fileCustoms;
}
//处理数据
@Override
public void processData(ShardingContext shardingContext, List<FileCustom> data) {
for(FileCustom custom:data){
backUp(custom);
}
}
private void backUp(FileCustom custom){
System.out.println("备份的方法名:"+custom.getName()+"备份的类型:"+custom.getType());
System.out.println("=======================");
//模拟进行备份操作
try {
TimeUnit.SECONDS.sleep(1);
} catch (InterruptedException e) {
e.printStackTrace();
}
fileCustomMapper.changeState(custom.getId(),1);
}
}
第二步:创建任务配置类
@Configuration
public class JobConfig {
@Bean
public static CoordinatorRegistryCenter registryCenter(@Value("${zookeeper.url}") String url, @Value("${zookeeper.groupName}") String groupName) {
ZookeeperConfiguration zookeeperConfiguration = new ZookeeperConfiguration(url, groupName);
//设置节点超时时间
zookeeperConfiguration.setSessionTimeoutMilliseconds(100);
//zookeeperConfiguration("zookeeper地址","项目名")
CoordinatorRegistryCenter regCenter = new ZookeeperRegistryCenter(zookeeperConfiguration);
regCenter.init();
return regCenter;
}
//功能的方法
private static LiteJobConfiguration createJobConfiguration(Class clazz, String corn, int shardingCount,String shardingParam,boolean isDateFlowJob) {
JobCoreConfiguration.Builder jobBuilder = JobCoreConfiguration.newBuilder(clazz.getSimpleName(), corn, shardingCount);
if(!StringUtils.isEmpty(shardingParam)){
jobBuilder.shardingItemParameters(shardingParam);
}
//定义作业核心配置newBuilder("任务名称","corn表达式","分片数量")
JobCoreConfiguration simpleCoreConfig = jobBuilder.build();
// 定义SIMPLE类型配置 cn.wolfcode.MyElasticJob
JobTypeConfiguration jobConfiguration;
if(isDateFlowJob){
jobConfiguration = new DataflowJobConfiguration(simpleCoreConfig,clazz.getCanonicalName(),true);
}else{
jobConfiguration = new SimpleJobConfiguration(simpleCoreConfig,clazz.getCanonicalName());
}
//定义Lite作业根配置
LiteJobConfiguration simpleJobRootConfig = LiteJobConfiguration.newBuilder(jobConfiguration).overwrite(true).build();
return simpleJobRootConfig;
}
@Bean(initMethod = "init")
public SpringJobScheduler fileDatFlowaScheduler(FileDataflowJob job, CoordinatorRegistryCenter registryCenter){
LiteJobConfiguration jobConfiguration = createJobConfiguration(job.getClass(),"0/10 * * * * ?",1,null,true);
return new SpringJobScheduler(job,registryCenter,jobConfiguration);
}
}
第三步:创建Mapper映射文件
@Mapper
public interface FileCustomMapper {
@Update("update t_file_custom set backedUp = #{state} where id = #{id}")
int changeState(@Param("id") Long id, @Param("state")int state);
@Select("select * from t_file_custom where backedUp = 0 limit #{count}")
List<FileCustom> selectLimit(int count);
}
Elastic-Job-Lite在配置中提供了JobEventConfiguration,支持数据库方式配置,会在数据库中自动创建JOB_EXECUTION_LOG和JOB_STATUS_TRACE_LOG两张表以及若干索引来近路作业的相关信息。
修改Elastic-job配置类
第一步:在ElasticJobConfig配置类中注入DataSource
第二步:在任务配置中增加事件追踪配置
该表记录每次作业的执行历史,分为两个步骤:
1.作业开始执行时间想数据库插入数据
2.作业完成执行时向数据库更新数据,更新is_success,complete_time和failure_cause(如果任务执行失败)
该表记录作业状态变更痕迹表,可通过每次作业运行的task_id查询作业状态变化的生命轨迹和运行轨迹
1.解压缩
2.进入bin目录,并执行
bin\start.bat
3.打开浏览器访问http://localhost:8899
用户名:root 密码:root
第一步:注册中心配置
第二步:事件追踪数据源配置