【阿旭机器学习实战】【25】决策树模型----树叶分类实战

【阿旭机器学习实战】系列文章主要介绍机器学习的各种算法模型及其实战案例,欢迎点赞,关注共同学习交流。

本文通过构建决策树模型,对某树叶分类数据集进行建模预测,并进行模型优化。

目录

  • 决策树进行树叶分类实战
  • 1. 导入数据
  • 2. 特征工程
  • 3. 构建决策树模型
  • 4. 模型优化

决策树进行树叶分类实战

1. 导入数据

import pandas as pd
import matplotlib.pyplot as plt

from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection  import GridSearchCV
data = pd.read_csv('train.csv')
data.head()
id species margin1 margin2 margin3 margin4 margin5 margin6 margin7 margin8 ... texture55 texture56 texture57 texture58 texture59 texture60 texture61 texture62 texture63 texture64
0 1 Acer_Opalus 0.007812 0.023438 0.023438 0.003906 0.011719 0.009766 0.027344 0.0 ... 0.007812 0.000000 0.002930 0.002930 0.035156 0.0 0.0 0.004883 0.000000 0.025391
1 2 Pterocarya_Stenoptera 0.005859 0.000000 0.031250 0.015625 0.025391 0.001953 0.019531 0.0 ... 0.000977 0.000000 0.000000 0.000977 0.023438 0.0 0.0 0.000977 0.039062 0.022461
2 3 Quercus_Hartwissiana 0.005859 0.009766 0.019531 0.007812 0.003906 0.005859 0.068359 0.0 ... 0.154300 0.000000 0.005859 0.000977 0.007812 0.0 0.0 0.000000 0.020508 0.002930
3 5 Tilia_Tomentosa 0.000000 0.003906 0.023438 0.005859 0.021484 0.019531 0.023438 0.0 ... 0.000000 0.000977 0.000000 0.000000 0.020508 0.0 0.0 0.017578 0.000000 0.047852
4 6 Quercus_Variabilis 0.005859 0.003906 0.048828 0.009766 0.013672 0.015625 0.005859 0.0 ... 0.096680 0.000000 0.021484 0.000000 0.000000 0.0 0.0 0.000000 0.000000 0.031250

5 rows × 194 columns

数据说明:
species类别,64个margin边缘特征,64个shape形状特征,64个texture质感特征

一共有99个树叶类别

data.shape
(990, 194)
# 查看树叶类别数
len(data.species.unique())
99

2. 特征工程

# 把字符串类别转化为数字形式
lb = LabelEncoder().fit(data.species) 
labels = lb.transform(data.species)    
# 去掉'species', 'id'这两列对于训练模型无用的列
data = data.drop(['species', 'id'], axis=1)  
data.head()
margin1 margin2 margin3 margin4 margin5 margin6 margin7 margin8 margin9 margin10 ... texture55 texture56 texture57 texture58 texture59 texture60 texture61 texture62 texture63 texture64
0 0.007812 0.023438 0.023438 0.003906 0.011719 0.009766 0.027344 0.0 0.001953 0.033203 ... 0.007812 0.000000 0.002930 0.002930 0.035156 0.0 0.0 0.004883 0.000000 0.025391
1 0.005859 0.000000 0.031250 0.015625 0.025391 0.001953 0.019531 0.0 0.000000 0.007812 ... 0.000977 0.000000 0.000000 0.000977 0.023438 0.0 0.0 0.000977 0.039062 0.022461
2 0.005859 0.009766 0.019531 0.007812 0.003906 0.005859 0.068359 0.0 0.000000 0.044922 ... 0.154300 0.000000 0.005859 0.000977 0.007812 0.0 0.0 0.000000 0.020508 0.002930
3 0.000000 0.003906 0.023438 0.005859 0.021484 0.019531 0.023438 0.0 0.013672 0.017578 ... 0.000000 0.000977 0.000000 0.000000 0.020508 0.0 0.0 0.017578 0.000000 0.047852
4 0.005859 0.003906 0.048828 0.009766 0.013672 0.015625 0.005859 0.0 0.000000 0.005859 ... 0.096680 0.000000 0.021484 0.000000 0.000000 0.0 0.0 0.000000 0.000000 0.031250

5 rows × 192 columns

labels[:5]
array([ 3, 49, 65, 94, 84], dtype=int64)
# 切分数据集
x_train,x_test,y_train,y_test = train_test_split(data, labels, test_size=0.2, stratify=labels)

3. 构建决策树模型

tree = DecisionTreeClassifier()
tree.fit(x_train, y_train)
DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=None,
            max_features=None, max_leaf_nodes=None,
            min_impurity_decrease=0.0, min_impurity_split=None,
            min_samples_leaf=1, min_samples_split=2,
            min_weight_fraction_leaf=0.0, presort=False, random_state=None,
            splitter='best')
tree.score(x_test, y_test)
0.6767676767676768
tree.score(x_train, y_train)
1.0

结果表明该模型在训练集准确率为100%,而在测试集准确率仅有67%,存在过拟合现象,模型需要进一步优化。

4. 模型优化

# max_depth:树的最大深度
# min_samples_split:内部节点再划分所需最小样本数
# min_samples_leaf:叶子节点最少样本数
param_grid = {'max_depth': [10,15,20,25,30],
                    'min_samples_split': [2,3,4,5,6,7,8],
                    'min_samples_leaf':[1,2,3,4,5,6,7]}
# 网格搜索
model = GridSearchCV(tree, param_grid, cv=3)
model.fit(x_train, y_train)
print(model.best_estimator_)
DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=30,
            max_features=None, max_leaf_nodes=None,
            min_impurity_decrease=0.0, min_impurity_split=None,
            min_samples_leaf=4, min_samples_split=5,
            min_weight_fraction_leaf=0.0, presort=False, random_state=None,
            splitter='best')
model.score(x_train, y_train)
0.9444444444444444
model.score(x_test, y_test)
0.6868686868686869

如果内容对你有帮助,感谢点赞+关注哦!

欢迎关注我的公众号:阿旭算法与机器学习,共同学习交流。
更多干货内容持续更新中…

你可能感兴趣的:(机器学习实战,决策树,分类)