opencv-各模块待补充

参考:https://docs.opencv.org/3.2.0/


1、highgui module

参考:https://docs.opencv.org/3.2.0/da/d6a/tutorial_trackbar.html

  • 使用cv :: createTrackbar在OpenCV窗口中添加一个跟踪栏

C++

#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui.hpp"
#include 
using namespace cv;
const int alpha_slider_max = 100;
int alpha_slider;
double alpha;
double beta;
Mat src1;
Mat src2;
Mat dst;
static void on_trackbar( int, void* )
{
   alpha = (double) alpha_slider/alpha_slider_max ;
   beta = ( 1.0 - alpha );
   addWeighted( src1, alpha, src2, beta, 0.0, dst);
   imshow( "Linear Blend", dst );
}
int main( void )
{
   src1 = imread("../data/LinuxLogo.jpg");
   src2 = imread("../data/WindowsLogo.jpg");
   if( src1.empty() ) { printf("Error loading src1 \n"); return -1; }
   if( src2.empty() ) { printf("Error loading src2 \n"); return -1; }
   alpha_slider = 0;
   namedWindow("Linear Blend", WINDOW_AUTOSIZE); // Create Window
   char TrackbarName[50];
   sprintf( TrackbarName, "Alpha x %d", alpha_slider_max );
   createTrackbar( TrackbarName, "Linear Blend", &alpha_slider, alpha_slider_max, on_trackbar );
   on_trackbar( alpha_slider, 0 );
   waitKey(0);
   return 0;
}

附加 :cvui

参考:http://blog.csdn.net/wc781708249/article/details/78501484

python

参考:http://blog.csdn.net/wc781708249/article/details/78296147

import cv2
import numpy as np

def nothing(x):
    pass

# Create a black image, a window
img = np.zeros((300,512,3), np.uint8)
cv2.namedWindow('image')

# create trackbars for color change
cv2.createTrackbar('R','image',0,255,nothing) # 取值范围 0~255
cv2.createTrackbar('G','image',0,255,nothing)
cv2.createTrackbar('B','image',0,255,nothing)

# create switch for ON/OFF functionality
switch = '0 : OFF \n1 : ON'
cv2.createTrackbar(switch, 'image',0,1,nothing) # 0~1 范围

while(1):
    cv2.imshow('image',img)
    k = cv2.waitKey(1) & 0xFF
    if k == 27:
        break

    # get current positions of four trackbars
    r = cv2.getTrackbarPos('R','image')
    g = cv2.getTrackbarPos('G','image')
    b = cv2.getTrackbarPos('B','image')
    s = cv2.getTrackbarPos(switch,'image')

    if s == 0:
        img[:] = 0
    else:
        img[:] = [b,g,r]

cv2.destroyAllWindows()

2、imgcodecs module

Reading Geospatial Raster files with GDAL

参考:http://blog.csdn.net/wc781708249/article/details/78479584


3、videoio module

视频相似度测量

1、如何打开和读视频流
2、两种检查图像相似性的方法:PSNR和SSIM

参考:
https://docs.opencv.org/3.2.0/d5/dc4/tutorial_video_input_psnr_ssim.html

C++

#include  // for standard I/O
#include    // for strings
#include   // for controlling float print precision
#include   // string to number conversion
#include      // Basic OpenCV structures (cv::Mat, Scalar)
#include   // Gaussian Blur
#include 
#include   // OpenCV window I/O
using namespace std;
using namespace cv;
double getPSNR(const Mat& I1, const Mat& I2);
Scalar getMSSIM(const Mat& I1, const Mat& I2);
static void help()
{
    cout
        << "------------------------------------------------------------------------------" << endl
        << "This program shows how to read a video file with OpenCV. In addition, it "
        << "tests the similarity of two input videos first with PSNR, and for the frames "
        << "below a PSNR trigger value, also with MSSIM." << endl
        << "Usage:" << endl
        << "./video-input-psnr-ssim     " << endl
        << "--------------------------------------------------------------------------" << endl
        << endl;
}
int main(int argc, char *argv[])
{
    help();
    if (argc != 5)
    {
        cout << "Not enough parameters" << endl;
        return -1;
    }
    stringstream conv;
    const string sourceReference = argv[1], sourceCompareWith = argv[2];
    int psnrTriggerValue, delay;
    conv << argv[3] << endl << argv[4];       // put in the strings
    conv >> psnrTriggerValue >> delay;        // take out the numbers
    int frameNum = -1;          // Frame counter
    VideoCapture captRefrnc(sourceReference), captUndTst(sourceCompareWith);
    if (!captRefrnc.isOpened())
    {
        cout << "Could not open reference " << sourceReference << endl;
        return -1;
    }
    if (!captUndTst.isOpened())
    {
        cout << "Could not open case test " << sourceCompareWith << endl;
        return -1;
    }
    Size refS = Size((int)captRefrnc.get(CAP_PROP_FRAME_WIDTH),
        (int)captRefrnc.get(CAP_PROP_FRAME_HEIGHT)),
        uTSi = Size((int)captUndTst.get(CAP_PROP_FRAME_WIDTH),
        (int)captUndTst.get(CAP_PROP_FRAME_HEIGHT));
    if (refS != uTSi)
    {
        cout << "Inputs have different size!!! Closing." << endl;
        return -1;
    }
    const char* WIN_UT = "Under Test";
    const char* WIN_RF = "Reference";
    // Windows
    namedWindow(WIN_RF, WINDOW_AUTOSIZE);
    namedWindow(WIN_UT, WINDOW_AUTOSIZE);
    moveWindow(WIN_RF, 400, 0);         //750,  2 (bernat =0)
    moveWindow(WIN_UT, refS.width, 0);         //1500, 2
    cout << "Reference frame resolution: Width=" << refS.width << "  Height=" << refS.height
        << " of nr#: " << captRefrnc.get(CAP_PROP_FRAME_COUNT) << endl;
    cout << "PSNR trigger value " << setiosflags(ios::fixed) << setprecision(3)
        << psnrTriggerValue << endl;
    Mat frameReference, frameUnderTest;
    double psnrV;
    Scalar mssimV;
    for (;;) //Show the image captured in the window and repeat
    {
        captRefrnc >> frameReference;
        captUndTst >> frameUnderTest;
        if (frameReference.empty() || frameUnderTest.empty())
        {
            cout << " < < <  Game over!  > > > ";
            break;
        }
        ++frameNum;
        cout << "Frame: " << frameNum << "# ";
        psnrV = getPSNR(frameReference, frameUnderTest);
        cout << setiosflags(ios::fixed) << setprecision(3) << psnrV << "dB";
        if (psnrV < psnrTriggerValue && psnrV)
        {
            mssimV = getMSSIM(frameReference, frameUnderTest);
            cout << " MSSIM: "
                << " R " << setiosflags(ios::fixed) << setprecision(2) << mssimV.val[2] * 100 << "%"
                << " G " << setiosflags(ios::fixed) << setprecision(2) << mssimV.val[1] * 100 << "%"
                << " B " << setiosflags(ios::fixed) << setprecision(2) << mssimV.val[0] * 100 << "%";
        }
        cout << endl;
        imshow(WIN_RF, frameReference);
        imshow(WIN_UT, frameUnderTest);
        char c = (char)waitKey(delay);
        if (c == 27) break;
    }
    return 0;
}
double getPSNR(const Mat& I1, const Mat& I2)
{
    Mat s1;
    absdiff(I1, I2, s1);       // |I1 - I2|
    s1.convertTo(s1, CV_32F);  // cannot make a square on 8 bits
    s1 = s1.mul(s1);           // |I1 - I2|^2
    Scalar s = sum(s1);        // sum elements per channel
    double sse = s.val[0] + s.val[1] + s.val[2]; // sum channels
    if (sse <= 1e-10) // for small values return zero
        return 0;
    else
    {
        double mse = sse / (double)(I1.channels() * I1.total());
        double psnr = 10.0 * log10((255 * 255) / mse);
        return psnr;
    }
}
Scalar getMSSIM(const Mat& i1, const Mat& i2)
{
    const double C1 = 6.5025, C2 = 58.5225;
    /***************************** INITS **********************************/
    int d = CV_32F;
    Mat I1, I2;
    i1.convertTo(I1, d);            // cannot calculate on one byte large values
    i2.convertTo(I2, d);
    Mat I2_2 = I2.mul(I2);        // I2^2
    Mat I1_2 = I1.mul(I1);        // I1^2
    Mat I1_I2 = I1.mul(I2);        // I1 * I2
                                   /*************************** END INITS **********************************/
    Mat mu1, mu2;                   // PRELIMINARY COMPUTING
    GaussianBlur(I1, mu1, Size(11, 11), 1.5);
    GaussianBlur(I2, mu2, Size(11, 11), 1.5);
    Mat mu1_2 = mu1.mul(mu1);
    Mat mu2_2 = mu2.mul(mu2);
    Mat mu1_mu2 = mu1.mul(mu2);
    Mat sigma1_2, sigma2_2, sigma12;
    GaussianBlur(I1_2, sigma1_2, Size(11, 11), 1.5);
    sigma1_2 -= mu1_2;
    GaussianBlur(I2_2, sigma2_2, Size(11, 11), 1.5);
    sigma2_2 -= mu2_2;
    GaussianBlur(I1_I2, sigma12, Size(11, 11), 1.5);
    sigma12 -= mu1_mu2;
    Mat t1, t2, t3;
    t1 = 2 * mu1_mu2 + C1;
    t2 = 2 * sigma12 + C2;
    t3 = t1.mul(t2);                 // t3 = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))
    t1 = mu1_2 + mu2_2 + C1;
    t2 = sigma1_2 + sigma2_2 + C2;
    t1 = t1.mul(t2);                 // t1 =((mu1_2 + mu2_2 + C1).*(sigma1_2 + sigma2_2 + C2))
    Mat ssim_map;
    divide(t3, t1, ssim_map);        // ssim_map =  t3./t1;
    Scalar mssim = mean(ssim_map);   // mssim = average of ssim map
    return mssim;
}

Python

import cv2
import numpy as np

#########################################
def getPSNR(I1,I2):
    s1=cv2.absdiff(I1,I2) # |I1 - I2|
    s1=np.float32(s1)  # cannot make a square on 8 bits
    s1=s1*s1 # |I1 - I2|^2
    s=np.sum(s1)
    if s<1e-10: # for small values return zero
        return 0
    else:
        mse=s/I1.size
        psnr=10.0 * np.log10((255 * 255) / mse)
        return psnr


def getMSSIM(I1,I2):
    C1 = 6.5025; C2 = 58.5225
    d = cv2.CV_32F
    I1 = np.float32(I1)
    I2 = np.float32(I2)

    I2_2=I2*I2
    I1_2=I1*I1
    I1_I2=I1*I2

    mu1=cv2.GaussianBlur(I1,(11,11),1.5)
    mu2 = cv2.GaussianBlur(I2, (11, 11), 1.5)
    mu1_2=mu1*mu1
    mu2_2=mu2*mu2
    mu1_mu2=mu1*mu2
    sigma1_2=cv2.GaussianBlur(I1_2, (11, 11), 1.5)
    sigma1_2 -= mu1_2
    sigma2_2=cv2.GaussianBlur(I2_2, (11, 11), 1.5)
    sigma2_2 -= mu2_2
    sigma12=cv2.GaussianBlur(I1_I2, (11, 11), 1.5)
    sigma12 -= mu1_mu2

    t1 = 2 * mu1_mu2 + C1
    t2 = 2 * sigma12 + C2
    t3 = t1*t2 # t3 = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))

    t1 = mu1_2 + mu2_2 + C1;
    t2 = sigma1_2 + sigma2_2 + C2;
    t1 = t1*t2   # t1 =((mu1_2 + mu2_2 + C1).*(sigma1_2 + sigma2_2 + C2))

    ssim_map=cv2.divide(t3,t1) # ssim_map =  t3./t1;

    mssim = cv2.mean(ssim_map) # mssim = average of ssim map
    return mssim
########################################

sourceReference="vtest.avi"
sourceCompareWith="vtest.avi"

psnrTriggerValue=10
delay=60

# 打开视频
captRefrnc = cv2.VideoCapture(sourceReference)
captUndTst = cv2.VideoCapture(sourceCompareWith)


if not captRefrnc.isOpened():
    print("Could not open reference", sourceReference);exit(-1)


if not captUndTst.isOpened():
    print("Could not open case test", sourceCompareWith);exit(-1)

# 比较视频尺寸
w1=int(captRefrnc.get(cv2.CAP_PROP_FRAME_WIDTH)) # 或 w1=captRefrnc.get(3) 宽
h1=int(captRefrnc.get(cv2.CAP_PROP_FRAME_HEIGHT)) # 或 h1=captRefrnc.get(4) 高
# 补充 设置视频高 ret=cap.set(4,240)

w2=int(captUndTst.get(cv2.CAP_PROP_FRAME_WIDTH))
h2=int(captUndTst.get(cv2.CAP_PROP_FRAME_HEIGHT))

if w1!=w2 or h1!=h2:
    print("Inputs have different size!!! Closing.");exit(-1)

# Windows
WIN_UT = "Under Test"
WIN_RF = "Reference"

cv2.namedWindow(WIN_RF,cv2.WINDOW_AUTOSIZE)
cv2.namedWindow(WIN_UT,cv2.WINDOW_AUTOSIZE)
cv2.moveWindow(WIN_RF, 400, 0)
cv2.moveWindow(WIN_UT, w1, 0)

print("Reference frame resolution: Width=",w1,"  Height=",h1," of nr#: ",
      captRefrnc.get(cv2.CAP_PROP_FRAME_COUNT))

frameNum = -1
# Show the image captured in the window and repeat
while(1):
    ret1,frameReference = captRefrnc.read()
    ret2,frameUnderTest = captUndTst.read()
    if not ret1 or not ret2:
        print( "Game over!" )
        break
    frameNum+=1
    print("Frame: ",frameNum,"# ")

    psnrV = getPSNR(frameReference, frameUnderTest)
    if psnrVand psnrV:
        mssimV = getMSSIM(frameReference, frameUnderTest)
        print(" MSSIM:"," R ",mssimV[2] * 100," G ",mssimV[1] * 100," B ",mssimV[0] * 100)

    cv2.imshow(WIN_RF, frameReference)
    cv2.imshow(WIN_UT, frameUnderTest)

    # c = ord(cv2.waitKey(delay)) # 转ASCII
    c=cv2.waitKey(delay) & 0xff
    if c == 27:break

OpenCV创建视频

  • 如何使用OpenCV创建视频文件
  • 什么类型的视频文件可以用OpenCV创建
  • 如何从视频中提取给定的颜色通道

参考:https://docs.opencv.org/3.2.0/d7/d9e/tutorial_video_write.html

C++

#include  // for standard I/O
#include    // for strings
#include      // Basic OpenCV structures (cv::Mat)
#include   // Video write
using namespace std;
using namespace cv;
static void help()
{
    cout
        << "------------------------------------------------------------------------------" << endl
        << "This program shows how to write video files."                                   << endl
        << "You can extract the R or G or B color channel of the input video."              << endl
        << "Usage:"                                                                         << endl
        << "./video-write  [ R | G | B] [Y | N]"                          << endl
        << "------------------------------------------------------------------------------" << endl
        << endl;
}
int main(int argc, char *argv[])
{
    help();
    if (argc != 4)
    {
        cout << "Not enough parameters" << endl;
        return -1;
    }
    const string source      = argv[1];           // the source file name
    const bool askOutputType = argv[3][0] =='Y';  // If false it will use the inputs codec type
    VideoCapture inputVideo(source);              // Open input
    if (!inputVideo.isOpened())
    {
        cout  << "Could not open the input video: " << source << endl;
        return -1;
    }
    string::size_type pAt = source.find_last_of('.');                  // Find extension point
    const string NAME = source.substr(0, pAt) + argv[2][0] + ".avi";   // Form the new name with container
    int ex = static_cast<int>(inputVideo.get(CAP_PROP_FOURCC));     // Get Codec Type- Int form
    // Transform from int to char via Bitwise operators
    char EXT[] = {(char)(ex & 0XFF) , (char)((ex & 0XFF00) >> 8),(char)((ex & 0XFF0000) >> 16),(char)((ex & 0XFF000000) >> 24), 0};
    Size S = Size((int) inputVideo.get(CAP_PROP_FRAME_WIDTH),    // Acquire input size
                  (int) inputVideo.get(CAP_PROP_FRAME_HEIGHT));
    VideoWriter outputVideo;                                        // Open the output
    if (askOutputType)
        outputVideo.open(NAME, ex=-1, inputVideo.get(CAP_PROP_FPS), S, true);
    else
        outputVideo.open(NAME, ex, inputVideo.get(CAP_PROP_FPS), S, true);
    if (!outputVideo.isOpened())
    {
        cout  << "Could not open the output video for write: " << source << endl;
        return -1;
    }
    cout << "Input frame resolution: Width=" << S.width << "  Height=" << S.height
         << " of nr#: " << inputVideo.get(CAP_PROP_FRAME_COUNT) << endl;
    cout << "Input codec type: " << EXT << endl;
    int channel = 2; // Select the channel to save
    switch(argv[2][0])
    {
    case 'R' : channel = 2; break;
    case 'G' : channel = 1; break;
    case 'B' : channel = 0; break;
    }
    Mat src, res;
    vector spl;
    for(;;) //Show the image captured in the window and repeat
    {
        inputVideo >> src;              // read
        if (src.empty()) break;         // check if at end
        split(src, spl);                // process - extract only the correct channel
        for (int i =0; i < 3; ++i)
            if (i != channel)
                spl[i] = Mat::zeros(S, spl[0].type());
       merge(spl, res);
       //outputVideo.write(res); //save or
       outputVideo << res;
    }
    cout << "Finished writing" << endl;
    return 0;
}

python

# -*- coding: UTF-8 -*-
import cv2
import numpy as np
import os

source="./vtest.avi"

askOutputType =False

inputVideo=cv2.VideoCapture(source)
if not inputVideo.isOpened():
    print("Could not open the input video: ");exit(-1)

pAt =source.split('/')[0]
NAME =os.path.join(pAt,"R"+".avi") # Form the new name with container

ex=int(inputVideo.get(cv2.CAP_PROP_FOURCC)) # Get Codec Type- Int form

# Transform from int to char via Bitwise operators
EXT=[(chr)(ex & 0XFF),(chr)((ex & 0XFF00) >> 8),(chr)((ex & 0XFF0000) >> 16),(chr)((ex & 0XFF000000) >> 24), 0]

S=(int(inputVideo.get(cv2.CAP_PROP_FRAME_WIDTH)), # Acquire input size
   int(inputVideo.get(cv2.CAP_PROP_FRAME_HEIGHT)))

# outputVideo=cv2.VideoWriter()
if askOutputType:
    # outputVideo.open(NAME, ex=-1)
    outputVideo = cv2.VideoWriter(NAME, -1, inputVideo.get(cv2.CAP_PROP_FPS), S)
else:
    # outputVideo.open(NAME, ex)
    outputVideo = cv2.VideoWriter(NAME, ex, inputVideo.get(cv2.CAP_PROP_FPS), S)


if not outputVideo.isOpened():
    print("Could not open the output video for write: ",source)
    exit(-1)

print("Input frame resolution: Width=",S[0],"  Height=",S[1]," of nr#: ",
      inputVideo.get(cv2.CAP_PROP_FRAME_COUNT))
print("Input codec type: ",EXT)

channel = 2
while(1):
    ret,src=inputVideo.read()
    if not ret:break
    spl=cv2.split(src)
    for i in range(3):
        if i !=channel:
            spl[i]=np.zeros(spl[0].shape[:2],spl[0].dtype)

    res=cv2.merge(spl)

    # outputVideo.write(res); //save or
    outputVideo.write(res)

inputVideo.release()
outputVideo.release()
cv2.destroyAllWindows()
print("Finished writing")
exit(0)

4、calib3d module

方形棋盘的摄像机校准

参考:http://blog.csdn.net/wc781708249/article/details/78528920#4221-%E8%AE%BE%E7%BD%AE-findchessboardcornerspy

  • 通过在cmake配置中将BUILD_EXAMPLES设置为ON来编译opencv样本。
  • 转到bin文件夹并使用imagelist_creator来创建图像的XML / YAML列表。
  • 然后,运行校准样本来获取相机参数。 使用方形尺寸等于3厘米。
# -*- coding: utf-8 -*-
# @Time    : 2017/7/13 下午6:21
# @Author  : play4fun
# @File    : 42.2.1-设置-findChessboardCorners.py
# @Software: PyCharm

"""
42.2.1-设置-findChessboardCorners.py:

径向畸变和切想畸变
摄像机的内部和外部参数。 内部参数是摄像机特异的。它包括的信息有焦 ( fx, fy) 光学中心 (cx, cy)  等。 也 称为摄像机矩阵。它完全取决于摄像机自  只需要计算一次 以后就可以已知使用了。

至少需要10张图案模式来进行摄像机标定
3D 点 称为对象点, 2D 图像点 称为图像点

除了使用棋盘之外 我们 可以使用环形格子
使用函数 cv2.findCirclesGrid() 来找图案。
据说使用环形格子只需要很少的图像 就可以了。

"""

import numpy as np
import cv2
import glob

# termination criteria
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
# prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)
objp = np.zeros((6 * 7, 3), np.float32)
objp[:, :2] = np.mgrid[0:7, 0:6].T.reshape(-1, 2)
# Arrays to store object points and image points from all the images.
objpoints = []  # 3d point in real world space
imgpoints = []  # 2d points in image plane.
images = glob.glob('../data/left*.jpg')
images += glob.glob('../data/right*.jpg')
for fname in images:
    img = cv2.imread(fname)
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    # Find the chess board corners
    ret, corners = cv2.findChessboardCorners(gray, (7, 6), None)
    # If found, add object points, image points (after refining them)
    if ret == True:
        objpoints.append(objp)
        corners2 = cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria)
        imgpoints.append(corners)
        # Draw and display the corners
        cv2.drawChessboardCorners(img, (7, 6), corners2, ret)
        cv2.imshow('img', img)
        cv2.waitKey(500)
cv2.destroyAllWindows()

Camera calibration With OpenCV

摄像机校准
参考:https://docs.opencv.org/3.2.0/d4/d94/tutorial_camera_calibration.html

  • 确定失真矩阵
  • 确定相机矩阵
  • 从相机,视频和图像文件列表中进行输入
  • 从XML / YAML文件读取配置
  • 将结果保存到XML / YAML文件中
  • 计算重新投影错误

C++

参考:https://stackoverflow.com/questions/8368255/camera-calibration-with-opencv-assertion-failed-fault

#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "C:/opencv/include/opencv/cv.h"

#include 
#include 

using namespace cv;
using namespace std;

std::vector imageCorners;
std::vector objectCorners;
std::vector<std::vector> objectPoints;
std::vector<std::vector> imagePoints;

void addPoints(const std::vector&imageCorners, const std::vector& objectCorners)
{
// 2D image points from one view
imagePoints.push_back(imageCorners);
// corresponding 3D scene points
objectPoints.push_back(objectCorners);
}
int main()
{

int key;
cv::Mat   image;
cv::Mat   gray_image;

VideoCapture cap("here goes path of the file"); 
   if (!cap.isOpened())  // check if we succeeded
       cout<<"failed";
else
   cout<<"success";

    cvNamedWindow( "video",0);

cv::Size boardSize(8,6);
// output Matrices
cv::Mat cameraMatrix;
std::vector rvecs, tvecs;
cv::Mat distCoeffs;

for (int i=0; ifor (int j=0; j0.0f));
    }
}
int frame=1;
int corner_count=0;
while(1) 
{
    if(cap.read(image))
    {
        frame++;
        if(frame%20==0)
        {
            if(waitKey(30) >= 0) break;

            bool found = cv::findChessboardCorners(image, boardSize, imageCorners);

            cvtColor( image, gray_image, CV_RGB2GRAY );


                addPoints(imageCorners, objectCorners);

            //bool found = cv::findChessboardCorners(image,boardSize, imageCorners);
            cv::drawChessboardCorners(gray_image,boardSize, imageCorners,found);
            imshow( "video",  gray_image );
        }
    }
    else
        break;

}
int flag=0;
std::string text="";

for (int i=1; istd::stringstream out;
    out << imagePoints[i];
    text=out.str();
    cout<return 0;

}

Python

参考:https://stackoverflow.com/questions/31249037/calibrating-webcam-using-python-and-opencv-error?rq=1

# -*- coding: UTF-8 -*-
import numpy as np
import cv2
import glob


criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
# Arrays to store object points and image points from all the images.
objpoints = [] # 3d point in real world
imgpoints = [] # 2d points in image plane.

# checkerboard Dimensions
cbrow = 5
cbcol = 7
objp = np.zeros((cbrow*cbcol,3), np.float32)
objp[:,:2] = np.mgrid[0:cbcol,0:cbrow].T.reshape(-1,2)
objp = objp * 22

"""
inputVideo=cv2.VideoCapture("./vtest.avi")
if not inputVideo.isOpened():
    print("Could not open the input video: ");exit(-1)
while(1):
    ret, img = inputVideo.read()
    if not ret: break
"""
images = glob.glob('./left/*.jpg')
for fname in images:
    img = cv2.imread(fname)
    gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    ret = False
    # Find the chess board corners
    ret, corners = cv2.findChessboardCorners(gray, (cbcol,cbrow))
    # If found, add object points, image points (after refining them)
    if ret == True:
        objpoints.append(objp)
        cv2.cornerSubPix(gray, corners, (11,11), (-1,-1), criteria)

        imgpoints.append(corners)
        # Draw and display the corners
        cv2.drawChessboardCorners(img, (cbcol,cbrow), corners, ret)
        cv2.imshow('img',img)
        cv2.waitKey(0)

cv2.waitKey(0)
for i in range (1,5):
    cv2.waitKey(1)
    cv2.destroyAllWindows()
    cv2.waitKey(1)


ret, cameraMatrix, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1],None,None)

print ("camera matrix:\n", cameraMatrix)

# pi camera intrinsic parameters
ay = cameraMatrix[1, 1]
u0 = cameraMatrix[0, 2]
v0 = cameraMatrix[1, 2]
print ("Ay:", ay)
print ("u0:", u0)
print ("v0:", v0)

实时纹理对象姿态估计

Real Time pose estimation of a textured object
参考:https://docs.opencv.org/3.2.0/dc/d2c/tutorial_real_time_pose.html

  • 阅读3D纹理对象模型和对象网格。
  • 从相机或视频输入。
  • 从场景中提取ORB特征和描述符。
  • 使用Flann匹配器匹配场景描述符和模型描述符。
  • 使用PnP + Ransac进行姿态估计。
  • 线性卡尔曼滤波器的不良姿态抑制。

参考:http://blog.csdn.net/wc781708249/article/details/78528920#calib3dpy

交互式摄像机校准应用

参考:
https://docs.opencv.org/3.2.0/d7/d21/tutorial_interactive_calibration.html

  • 确定每个元素的失真矩阵和置信区间
  • 确定每个元素的相机矩阵和置信区间
  • 从相机或视频文件输入
  • 从XML文件读取配置
  • 将结果保存到XML文件中
  • 计算重新投影错误
  • 以锐利的角度拒绝模式的观点,以防止出现病态的雅可比块
  • 自动切换校准标志(如果需要,固定宽高比和失真矩阵元素)
  • 使用多个标准进行校准时自动检测
  • 自动捕捉静态模式(用户不需要按任何键捕捉帧,只是不要移动模式一秒钟)

5、feature2d module

Harris 角点探测器

  • 使用函数cv :: cornerHarris使用Harris-Stephens方法检测拐角。

C++

参考:https://docs.opencv.org/3.2.0/d4/d7d/tutorial_harris_detector.html

#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include 
using namespace cv;
using namespace std;
Mat src, src_gray;
int thresh = 200;
int max_thresh = 255;
const char* source_window = "Source image";
const char* corners_window = "Corners detected";
void cornerHarris_demo( int, void* );
int main( int, char** argv )
{
  src = imread( argv[1], IMREAD_COLOR );
  cvtColor( src, src_gray, COLOR_BGR2GRAY );
  namedWindow( source_window, WINDOW_AUTOSIZE );
  createTrackbar( "Threshold: ", source_window, &thresh, max_thresh, cornerHarris_demo );
  imshow( source_window, src );
  cornerHarris_demo( 0, 0 );
  waitKey(0);
  return(0);
}
void cornerHarris_demo( int, void* )
{
  Mat dst, dst_norm, dst_norm_scaled;
  dst = Mat::zeros( src.size(), CV_32FC1 );
  int blockSize = 2;
  int apertureSize = 3;
  double k = 0.04;
  cornerHarris( src_gray, dst, blockSize, apertureSize, k, BORDER_DEFAULT );
  normalize( dst, dst_norm, 0, 255, NORM_MINMAX, CV_32FC1, Mat() );
  convertScaleAbs( dst_norm, dst_norm_scaled );
  for( int j = 0; j < dst_norm.rows ; j++ )
     { for( int i = 0; i < dst_norm.cols; i++ )
          {
            if( (int) dst_norm.at<float>(j,i) > thresh )
              {
               circle( dst_norm_scaled, Point( i, j ), 5,  Scalar(0), 2, 8, 0 );
              }
          }
     }
  namedWindow( corners_window, WINDOW_AUTOSIZE );
  imshow( corners_window, dst_norm_scaled );
}

python

参考:
http://blog.csdn.net/wc781708249/article/details/78524311#ch30-harris%E8%A7%92%E7%82%B9%E6%A3%80%E6%B5%8B

Shi-Tomasi角点探测器

  • 使用函数cv :: goodFeaturesToTrack使用Shi-Tomasi方法检测拐角。

C++

参考:
https://docs.opencv.org/3.2.0/d8/dd8/tutorial_good_features_to_track.html


#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include 
using namespace cv;
using namespace std;
Mat src, src_gray;
int maxCorners = 23;
int maxTrackbar = 100;
RNG rng(12345);
const char* source_window = "Image";
void goodFeaturesToTrack_Demo( int, void* );
int main( int, char** argv )
{
  src = imread( argv[1], IMREAD_COLOR );
  cvtColor( src, src_gray, COLOR_BGR2GRAY );
  namedWindow( source_window, WINDOW_AUTOSIZE );
  createTrackbar( "Max  corners:", source_window, &maxCorners, maxTrackbar, goodFeaturesToTrack_Demo );
  imshow( source_window, src );
  goodFeaturesToTrack_Demo( 0, 0 );
  waitKey(0);
  return(0);
}
void goodFeaturesToTrack_Demo( int, void* )
{
  if( maxCorners < 1 ) { maxCorners = 1; }
  vector corners;
  double qualityLevel = 0.01;
  double minDistance = 10;
  int blockSize = 3;
  bool useHarrisDetector = false;
  double k = 0.04;
  Mat copy;
  copy = src.clone();
  goodFeaturesToTrack( src_gray,
               corners,
               maxCorners,
               qualityLevel,
               minDistance,
               Mat(),
               blockSize,
               useHarrisDetector,
               k );
  cout<<"** Number of corners detected: "<int r = 4;
  for( size_t i = 0; i < corners.size(); i++ )
     { circle( copy, corners[i], r, Scalar(rng.uniform(0,255), rng.uniform(0,255), rng.uniform(0,255)), -1, 8, 0 ); }
  namedWindow( source_window, WINDOW_AUTOSIZE );
  imshow( source_window, copy );
}

Python

参考:
http://blog.csdn.net/wc781708249/article/details/78528617#goodfeaturestotrackpy

Creating yor own corner detector

  • 使用OpenCV函数cv :: cornerEigenValsAndVecs来查找特征值和特征向量,以确定像素是否是拐角。
  • 使用OpenCV函数cv :: cornerMinEigenVal来查找拐角检测的最小特征值。
  • 通过使用上述两个函数来实现我们自己的Harris探测器以及Shi-Tomasi探测器。

C++

参考:
https://docs.opencv.org/3.2.0/d9/dbc/tutorial_generic_corner_detector.html

#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include 
using namespace cv;
using namespace std;
Mat src, src_gray;
Mat myHarris_dst; Mat myHarris_copy; Mat Mc;
Mat myShiTomasi_dst; Mat myShiTomasi_copy;
int myShiTomasi_qualityLevel = 50;
int myHarris_qualityLevel = 50;
int max_qualityLevel = 100;
double myHarris_minVal; double myHarris_maxVal;
double myShiTomasi_minVal; double myShiTomasi_maxVal;
RNG rng(12345);
const char* myHarris_window = "My Harris corner detector";
const char* myShiTomasi_window = "My Shi Tomasi corner detector";
void myShiTomasi_function( int, void* );
void myHarris_function( int, void* );
int main( int, char** argv )
{
  src = imread( argv[1], IMREAD_COLOR );
  cvtColor( src, src_gray, COLOR_BGR2GRAY );
  int blockSize = 3; int apertureSize = 3;
  myHarris_dst = Mat::zeros( src_gray.size(), CV_32FC(6) );
  Mc = Mat::zeros( src_gray.size(), CV_32FC1 );
  cornerEigenValsAndVecs( src_gray, myHarris_dst, blockSize, apertureSize, BORDER_DEFAULT );
  /* calculate Mc */
  for( int j = 0; j < src_gray.rows; j++ )
     { for( int i = 0; i < src_gray.cols; i++ )
          {
            float lambda_1 = myHarris_dst.at(j, i)[0];
            float lambda_2 = myHarris_dst.at(j, i)[1];
            Mc.at<float>(j,i) = lambda_1*lambda_2 - 0.04f*pow( ( lambda_1 + lambda_2 ), 2 );
          }
     }
  minMaxLoc( Mc, &myHarris_minVal, &myHarris_maxVal, 0, 0, Mat() );
  /* Create Window and Trackbar */
  namedWindow( myHarris_window, WINDOW_AUTOSIZE );
  createTrackbar( " Quality Level:", myHarris_window, &myHarris_qualityLevel, max_qualityLevel, myHarris_function );
  myHarris_function( 0, 0 );
  myShiTomasi_dst = Mat::zeros( src_gray.size(), CV_32FC1 );
  cornerMinEigenVal( src_gray, myShiTomasi_dst, blockSize, apertureSize, BORDER_DEFAULT );
  minMaxLoc( myShiTomasi_dst, &myShiTomasi_minVal, &myShiTomasi_maxVal, 0, 0, Mat() );
  /* Create Window and Trackbar */
  namedWindow( myShiTomasi_window, WINDOW_AUTOSIZE );
  createTrackbar( " Quality Level:", myShiTomasi_window, &myShiTomasi_qualityLevel, max_qualityLevel, myShiTomasi_function );
  myShiTomasi_function( 0, 0 );
  waitKey(0);
  return(0);
}
void myShiTomasi_function( int, void* )
{
  myShiTomasi_copy = src.clone();
  if( myShiTomasi_qualityLevel < 1 ) { myShiTomasi_qualityLevel = 1; }
  for( int j = 0; j < src_gray.rows; j++ )
     { for( int i = 0; i < src_gray.cols; i++ )
          {
            if( myShiTomasi_dst.at<float>(j,i) > myShiTomasi_minVal + ( myShiTomasi_maxVal - myShiTomasi_minVal )*myShiTomasi_qualityLevel/max_qualityLevel )
              { circle( myShiTomasi_copy, Point(i,j), 4, Scalar( rng.uniform(0,255), rng.uniform(0,255), rng.uniform(0,255) ), -1, 8, 0 ); }
          }
     }
  imshow( myShiTomasi_window, myShiTomasi_copy );
}
void myHarris_function( int, void* )
{
  myHarris_copy = src.clone();
  if( myHarris_qualityLevel < 1 ) { myHarris_qualityLevel = 1; }
  for( int j = 0; j < src_gray.rows; j++ )
     { for( int i = 0; i < src_gray.cols; i++ )
          {
            if( Mc.at<float>(j,i) > myHarris_minVal + ( myHarris_maxVal - myHarris_minVal )*myHarris_qualityLevel/max_qualityLevel )
              { circle( myHarris_copy, Point(i,j), 4, Scalar( rng.uniform(0,255), rng.uniform(0,255), rng.uniform(0,255) ), -1, 8, 0 ); }
          }
     }
  imshow( myHarris_window, myHarris_copy );
}

检测子像素中的角落位置

参考:https://docs.opencv.org/3.2.0/d8/d5e/tutorial_corner_subpixeles.html

  • 使用OpenCV函数cv :: cornerSubPix来查找更精确的角位置(比整数像素更精确)。

特征检测

  • 使用cv :: FeatureDetector接口为了找到兴趣点。 特别:
    • 使用cv :: xfeatures2d :: SURF及其函数cv :: xfeatures2d :: SURF ::detect来执行检测过程
    • 使用函数cv :: drawKeypoints绘制检测到的关键点

C++

参考:https://docs.opencv.org/3.2.0/d7/d66/tutorial_feature_detection.html

#include 
#include 
#include "opencv2/core.hpp"
#include "opencv2/features2d.hpp"
#include "opencv2/xfeatures2d.hpp"
#include "opencv2/highgui.hpp"
using namespace cv;
using namespace cv::xfeatures2d;
void readme();
/* @function main */
int main( int argc, char** argv )
{
  if( argc != 3 )
  { readme(); return -1; }
  Mat img_1 = imread( argv[1], IMREAD_GRAYSCALE );
  Mat img_2 = imread( argv[2], IMREAD_GRAYSCALE );
  if( !img_1.data || !img_2.data )
  { std::cout<< " --(!) Error reading images " << std::endl; return -1; }
  //-- Step 1: Detect the keypoints using SURF Detector
  int minHessian = 400;
  Ptr detector = SURF::create( minHessian );
  std::vector keypoints_1, keypoints_2;
  detector->detect( img_1, keypoints_1 );
  detector->detect( img_2, keypoints_2 );
  //-- Draw keypoints
  Mat img_keypoints_1; Mat img_keypoints_2;
  drawKeypoints( img_1, keypoints_1, img_keypoints_1, Scalar::all(-1), DrawMatchesFlags::DEFAULT );
  drawKeypoints( img_2, keypoints_2, img_keypoints_2, Scalar::all(-1), DrawMatchesFlags::DEFAULT );
  //-- Show detected (drawn) keypoints
  imshow("Keypoints 1", img_keypoints_1 );
  imshow("Keypoints 2", img_keypoints_2 );
  waitKey(0);
  return 0;
  }
  /* @function readme */
  void readme()
  { std::cout << " Usage: ./SURF_detector  " << std::endl; }

6、video module

7、objdetect module

8、ml module

9、photo module

10、stitching module

11、cuda module

你可能感兴趣的:(opencv,opencv)