【源码解析】StyleNeRF之 projector.py

文章目录

      • 正式测试
  • debug了解projector

文件说明:Project given image to the latent space of pretrained network pickle
将给定图像投影到预训练网络 的潜在空间

options

@click.option('--network', 'network_pkl', help='Network pickle filename', required=True)
@click.option('--target', 'target_fname', help='Target image file to project to', required=True, metavar='FILE')
@click.option('--num-steps',              help='Number of optimization steps', type=int, default=1000, show_default=True)
@click.option('--seed',                   help='Random seed', type=int, default=303, show_default=True)
@click.option('--save-video',             help='Save an mp4 video of optimization progress', type=bool, default=True, show_default=True)
@click.option('--outdir',                 help='Where to save the output images', required=True, metavar='DIR')

运行命令:python projector.py --network=/home/joselyn/workspace/0419-course/stylenerf_pkl/ffhq_256.pkl --target=/home/joselyn/workspace/0419-course/my_images/test_img1024.png --outdir=/home/joselyn/workspace/0419-course/logs/StyleNeRF-main/projector1

报错 line 211 xxx
调整synth_image = (synth_image + 1) * (255/2)synth_image = (synth_image['img'] + 1) * (255/2)

正式测试

命令:python projector.py --network=/home/joselyn/workspace/0419-course/stylenerf_pkl/ffhq_256.pkl --target=/home/joselyn/workspace/0419-course/my_images/test_img1024.png --outdir=/home/joselyn/workspace/0419-course/logs/StyleNeRF-main/projector_s2 --seed=2 --num-steps=1000
结果如下: (过拟合了。尝试调整num-steps更小)
【源码解析】StyleNeRF之 projector.py_第1张图片【源码解析】StyleNeRF之 projector.py_第2张图片

命令:python projector.py --network=/home/joselyn/workspace/0419-course/stylenerf_pkl/ffhq_256.pkl --target=/home/joselyn/workspace/0419-course/my_images/test_img1024.png --outdir=/home/joselyn/workspace/0419-course/logs/StyleNeRF-main/projector_s4 --seed=4 --num-steps=500
结果如下:
【源码解析】StyleNeRF之 projector.py_第3张图片【源码解析】StyleNeRF之 projector.py_第4张图片

命令:python projector.py --network=/home/joselyn/workspace/0419-course/stylenerf_pkl/ffhq_256.pkl --target=/home/joselyn/workspace/0419-course/my_images/test_img1024.png --outdir=/home/joselyn/workspace/0419-course/logs/StyleNeRF-main/projector_s3 --seed=3 --num-steps=300
结果如下:

【源码解析】StyleNeRF之 projector.py_第5张图片【源码解析】StyleNeRF之 projector.py_第6张图片

debug了解projector

命令:--network=/home/joselyn/workspace/0419-course/stylenerf_pkl/ffhq_256.pkl --target=/home/joselyn/workspace/0419-course/my_images/test_img1024.png --outdir=/home/joselyn/workspace/0419-course/logs/StyleNeRF-main/projector_debug --seed=3 --num-steps=300

提取目标图像:

	target_pil = PIL.Image.open(target_fname).convert('RGB') # 1024x1024
    w, h = target_pil.size
    s = min(w, h)
    target_pil = target_pil.crop(((w - s) // 2, (h - s) // 2, (w + s) // 2, (h + s) // 2))
    target_pil = target_pil.resize((G.img_resolution, G.img_resolution), PIL.Image.LANCZOS) # resize 为256,256
    target_uint8 = np.array(target_pil, dtype=np.uint8) # 256,256,3

优化w

projected_w_steps = project(
        G,
        target=torch.tensor(target_uint8.transpose([2, 0, 1]), device=device), # pylint: disable=not-callable
        num_steps=num_steps,
        device=device,
        verbose=True
    )

返回的projected_w_steps shape为(num_steps,17,512)

合成视频: 对于projected_w_steps 中的每一个 w 利用 G. synthesis 来合成图像。

        for projected_w in projected_w_steps:
            synth_image = G.synthesis(projected_w.unsqueeze(0), noise_mode='const')
            synth_image = (synth_image['img'] + 1) * (255/2) # 1,3,256,256
            synth_image = synth_image.permute(0, 2, 3, 1).clamp(0, 255).to(torch.uint8)[0].cpu().numpy()
            video.append_data(np.concatenate([target_uint8, synth_image], axis=1))

保存目标图像和 projector的图像

	target_pil.save(f'{outdir}/target.png')
    projected_w = projected_w_steps[-1]  # 取最后一个w
    synth_image = G.synthesis(projected_w.unsqueeze(0), noise_mode='const')
    synth_image = (synth_image['img'] + 1) * (255/2)
    synth_image = synth_image.permute(0, 2, 3, 1).clamp(0, 255).to(torch.uint8)[0].cpu().numpy()
    PIL.Image.fromarray(synth_image, 'RGB').save(f'{outdir}/proj.png')

Renderer.py 中line73, kwargs["camera_matrices"] = self.get_camera_traj(t, ws.size(0), device=ws.device) 都是随机生成的,传ws进入只是为了获取batch。 ws 和latent_code有什么关系呢
【源码解析】StyleNeRF之 projector.py_第7张图片

networks,py line 1084 进行img = self.synthesis(ws, **synthesis_kwargs) 时,ws shape (1,17,512)
在这里插入图片描述

你可能感兴趣的:(NeRF,python,计算机视觉,深度学习,NeRF,StyleNeRF)