我们谈一下实际的场景吧。我们在开发中,有如下场景
a) 关闭空闲连接。服务器中,有很多客户端的连接,空闲一段时间之后需要关闭之。
b) 缓存。缓存中的对象,超过了空闲时间,需要从缓存中移出。
c) 任务超时处理。在网络协议滑动窗口请求应答式交互时,处理超时未响应的请求。
一种笨笨的办法就是,使用一个后台线程,遍历所有对象,挨个检查。这种笨笨的办法简单好用,但是对象数量过多时,可能存在性能问题,检查间隔时间不好设置,间隔时间过大,影响精确度,多小则存在效率问题。而且做不到按超时的时间顺序处理。
这场景,使用DelayQueue最适合了。
DelayQueue是java.util.concurrent中提供的一个很有意思的类。很巧妙,非常棒!但是java doc和Java SE 5.0的source中都没有提供Sample。我最初在阅读ScheduledThreadPoolExecutor源码时,发现DelayQueue的妙用。随后在实际工作中,应用在session超时管理,网络应答通讯协议的请求超时处理。
本文将会对DelayQueue做一个介绍,然后列举应用场景。并且提供一个Delayed接口的实现和Sample代码。
DelayQueue是一个BlockingQueue,其特化的参数是Delayed。(不了解BlockingQueue的同学,先去了解BlockingQueue再看本文)
Delayed扩展了Comparable接口,比较的基准为延时的时间值,Delayed接口的实现类getDelay的返回值应为固定值(final)。DelayQueue内部是使用
PriorityQueue实现的。
DelayQueue = BlockingQueue +
PriorityQueue + Delayed
DelayQueue的关键元素
BlockingQueue、
PriorityQueue、
Delayed。可以这么说,
DelayQueue是一个使用优先队列(
PriorityQueue
)实现的BlockingQueue,
优先队列的比较基准值是时间。
他们的基本定义如下
public
interface
Comparable
<
T
>
{
public
int
compareTo(T o);
}
public
interface
Delayed
extends
Comparable
<
Delayed
>
{
long
getDelay(TimeUnit unit);
}
public
class
DelayQueue
<
E
extends
Delayed
>
implements
BlockingQueue
<
E
>
{
private
final
PriorityQueue
<
E
>
q
=
new
PriorityQueue
<
E
>
();
}
DelayQueue内部的实现使用了一个优先队列。当调用DelayQueue的offer方法时,把Delayed对象加入到优先队列q中。如下:
public
boolean
offer(E e) {
final
ReentrantLock lock
=
this
.lock;
lock.lock();
try
{
E first
=
q.peek();
q.offer(e);
if
(first
==
null
||
e.compareTo(first)
<
0
)
available.signalAll();
return
true
;
}
finally
{
lock.unlock();
}
}
DelayQueue的take方法,把优先队列q的first拿出来(peek),如果没有达到延时阀值,则进行await处理。如下:
public
E take()
throws
InterruptedException {
final
ReentrantLock lock
=
this
.lock;
lock.lockInterruptibly();
try
{
for
(;;) {
E first
=
q.peek();
if
(first
==
null
) {
available.await();
}
else
{
long
delay
=
first.getDelay(TimeUnit.NANOSECONDS);
if
(delay
>
0
) {
long
tl
=
available.awaitNanos(delay);
}
else
{
E x
=
q.poll();
assert
x
!=
null
;
if
(q.size()
!=
0
)
available.signalAll();
//
wake up other takers
return
x;
}
}
}
}
finally
{
lock.unlock();
}
}
-------------------
以下是Sample,是一个缓存的简单实现。共包括三个类Pair、DelayItem、Cache。如下:
public
class
Pair
<
K, V
>
{
public
K first;
public
V second;
public
Pair() {}
public
Pair(K first, V second) {
this
.first
=
first;
this
.second
=
second;
}
}
--------------
以下是Delayed的实现
import
java.util.concurrent.Delayed;
import
java.util.concurrent.TimeUnit;
import
java.util.concurrent.atomic.AtomicLong;
public
class
DelayItem
<
T
>
implements
Delayed {
/**
Base of nanosecond timings, to avoid wrapping
*/
private
static
final
long
NANO_ORIGIN
=
System.nanoTime();
/**
* Returns nanosecond time offset by origin
*/
final
static
long
now() {
return
System.nanoTime()
-
NANO_ORIGIN;
}
/**
* Sequence number to break scheduling ties, and in turn to guarantee FIFO order among tied
* entries.
*/
private
static
final
AtomicLong sequencer
=
new
AtomicLong(
0
);
/**
Sequence number to break ties FIFO
*/
private
final
long
sequenceNumber;
/**
The time the task is enabled to execute in nanoTime units
*/
private
final
long
time;
private
final
T item;
public
DelayItem(T submit,
long
timeout) {
this
.time
=
now()
+
timeout;
this
.item
=
submit;
this
.sequenceNumber
=
sequencer.getAndIncrement();
}
public
T getItem() {
return
this
.item;
}
public
long
getDelay(TimeUnit unit) {
long
d
=
unit.convert(time
-
now(), TimeUnit.NANOSECONDS);
return
d;
}
public
int
compareTo(Delayed other) {
if
(other
==
this
)
//
compare zero ONLY if same object
return
0
;
if
(other
instanceof
DelayItem) {
DelayItem x
=
(DelayItem) other;
long
diff
=
time
-
x.time;
if
(diff
<
0
)
return
-
1
;
else
if
(diff
>
0
)
return
1
;
else
if
(sequenceNumber
<
x.sequenceNumber)
return
-
1
;
else
return
1
;
}
long
d
=
(getDelay(TimeUnit.NANOSECONDS)
-
other.getDelay(TimeUnit.NANOSECONDS));
return
(d
==
0
)
?
0
: ((d
<
0
)
?
-
1
:
1
);
}
}
以下是Cache的实现,包括了put和get方法,还包括了可执行的main函数。
import
java.util.concurrent.ConcurrentHashMap;
import
java.util.concurrent.ConcurrentMap;
import
java.util.concurrent.DelayQueue;
import
java.util.concurrent.TimeUnit;
import
java.util.logging.Level;
import
java.util.logging.Logger;
public
class
Cache
<
K, V
>
{
private
static
final
Logger LOG
=
Logger.getLogger(Cache.
class
.getName());
private
ConcurrentMap
<
K, V
>
cacheObjMap
=
new
ConcurrentHashMap
<
K, V
>
();
private
DelayQueue
<
DelayItem
<
Pair
<
K, V
>>>
q
=
new
DelayQueue
<
DelayItem
<
Pair
<
K, V
>>>
();
private
Thread daemonThread;
public
Cache() {
Runnable daemonTask
=
new
Runnable() {
public
void
run() {
daemonCheck();
}
};
daemonThread
=
new
Thread(daemonTask);
daemonThread.setDaemon(
true
);
daemonThread.setName(
"
Cache Daemon
"
);
daemonThread.start();
}
private
void
daemonCheck() {
if
(LOG.isLoggable(Level.INFO))
LOG.info(
"
cache service started.
"
);
for
(;;) {
try
{
DelayItem
<
Pair
<
K, V
>>
delayItem
=
q.take();
if
(delayItem
!=
null
) {
//
超时对象处理
Pair
<
K, V
>
pair
=
delayItem.getItem();
cacheObjMap.remove(pair.first, pair.second);
//
compare and remove
}
}
catch
(InterruptedException e) {
if
(LOG.isLoggable(Level.SEVERE))
LOG.log(Level.SEVERE, e.getMessage(), e);
break
;
}
}
if
(LOG.isLoggable(Level.INFO))
LOG.info(
"
cache service stopped.
"
);
}
//
添加缓存对象
public
void
put(K key, V value,
long
time, TimeUnit unit) {
V oldValue
=
cacheObjMap.put(key, value);
if
(oldValue
!=
null
)
q.remove(key);
long
nanoTime
=
TimeUnit.NANOSECONDS.convert(time, unit);
q.put(
new
DelayItem
<
Pair
<
K, V
>>
(
new
Pair
<
K, V
>
(key, value), nanoTime));
}
public
V get(K key) {
return
cacheObjMap.get(key);
}
//
测试入口函数
public
static
void
main(String[] args)
throws
Exception {
Cache
<
Integer, String
>
cache
=
new
Cache
<
Integer, String
>
();
cache.put(
1
,
"
aaaa
"
,
3
, TimeUnit.SECONDS);
Thread.sleep(
1000
*
2
);
{
String str
=
cache.get(
1
);
System.out.println(str);
}
Thread.sleep(
1000
*
2
);
{
String str
=
cache.get(
1
);
System.out.println(str);
}
}
}
运行Sample,main函数执行的结果是输出两行,第一行为aaa,第二行为null。