- 睡眠如何促进学习
方所
《考试脑科学》中用了一整个章节的篇幅来说明睡眠对学习的重要性,我想这个知识大家很早就已经知道了。可是尽管我很早就知道,可是从来未曾重视过或者打心底里是“不相信”的,仍然按照以往的经验学习,就在不知不自觉之间损失了效率,浪费了时间,希望看完这篇文章后,能让你更加重视这一知识。我们都知道,“海马体”是长期记忆的关卡,只有经过海马体审查的知识,才可能被我们真正吸收,成为长期知识。在我们睡着的时候,大脑会
- 第二届睡眠脑电专题班(直播:2023.5.13~5.14)
茗创科技
茗创科技专注于脑科学数据处理,涵盖(EEG/ERP,fMRI,结构像,DTI,ASL,,FNIRS)等,欢迎留言讨论及转发推荐,也欢迎了解茗创科技的脑电课程,数据处理服务及脑科学工作站销售业务,可添加我们的工程师(微信号MCKJ-zhouyi或17373158786)咨询。★课程简介★睡眠占据了人生命的三分之一,充足良好的睡眠也是健康不可或缺的条件之一。为什么有的人睡眠质量如此高?为什么有的人饱受
- AI与脑科学:相互启发,探索智能的本质
Liudef06小白
人工智能人工智能
AI与脑科学:相互启发,探索智能的本质人类大脑的物理组件正被逐个映射为数字模型,而人工智能的“黑箱”中则自发涌现出类人的思维结构,两大前沿领域的碰撞正重塑我们对“智能”的理解。2025年初,东南大学黄广斌教授团队发表了一项开创性研究,提出通过“细胞级别的AI孪生方法”将人脑物理组件转换为数字模型,从理论上证明:不受限制的AI能以任意小误差逼近人脑功能,并在25年内超越人类智能。这项集结了哈佛医学院
- DeepSeek核心技术浅谈
DeepSeek三个版本的区别:满血版本:DeepSeek完整的版本,性能强大但计算开销大。量化版本:模型不变,通过降低参数精度,提高推理效率。蒸馏版本:将大模型的知识压缩到更小的模型中,性能稍弱但轻便高效。一、提前预热:提前需要知道的背景知识传统机器学习理论:模型复杂度增加时,测试误差先下降后上升。现代机器学习实践:在过参数化的深度学习中测试误差会再次下降,形成“双下降“曲线,这成为大模型研究的
- ChatGPT用多了会变傻!MIT招募大学生做实验论证,用得越多人越笨
2501_92531722
eureka
大学生过度用ChatGPT,大脑会变傻!MIT最新脑科学研究发现:这类AI工具将会显著降低大脑活动水平,削弱记忆,甚至造成“认知惯性”。长期依赖,还会影响你的深度思考与创造力。m.ximalaya.com/sound/873590011/?70=725m.ximalaya.com/sound/873590011/?527=06m.ximalaya.com/sound/873590011/?628=
- AI模型的泛化性的第一性原理是什么?
mao_feng
人工智能
目录**一、泛化性的第一性原理:统计学习理论的核心****1.独立同分布假设(IID)是泛化的基础****2.泛化误差:理论本质的数学刻画****3.模型复杂度与样本量的权衡****二、实现泛化的核心机制:正则化与隐式约束****1.显式正则化:复杂度惩罚****2.隐式正则化:优化过程的泛化诱导****3.数据层面的泛化增强****三、深度学习的特殊性:过参数化与泛化的悖论****1.“双下降曲
- 管理概论笔记
Wangshanjie_98
读文章笔记其他
前言本文章属于在听课时做的笔记。第一周管理导论来源管理概论浙江大学~邢以群MOOC学习理论的目的是为了能够做没有学过的人做不了的事情或者比他们做得更好。一、管理及其功能:介绍什么是管理以及为什么需要管理观念决定行为,行为决定结果1、管理是什么从管理工作的表现形式来看,管理工作确实呈现出多样化的现象(由于对象的多样化),在协调关系。2、为什么需要管理人的无限性欲望与人的有限性资源之间的矛盾你的价值是
- hysys动态模拟教程_理论计算在线教学,单原子、量化入门、MD模拟、钙钛矿、装机配置,应有尽有...
吴山夜雨
hysys动态模拟教程
随着科技的进步,理论计算已经成为科研中越来越重要的一环。可是计算学习门槛比较高,没有人带入门,在遍地是坑的计算领域很难前进。为了解决大家学习理论计算困难的问题,让大家不出门就能得到高质量教学和答疑服务。庚子计算推出系列理论计算课程第一弹:单原子催化中的动态催化理论(免费)量子化学计算入门MD模拟:LAMMPS软件在金属材料中的应用MD模拟:GROMACS基础与自由能计算钙钛矿材料电子结构、光学性质
- 吴恩达深度学习课程实践项目集
Kiki-2189
本文还有配套的精品资源,点击获取简介:吴恩达深度学习编程作业包含了Coursera平台课程中的实践环节,为学员提供深度学习理论与编程技能的巩固。这些作业从基础神经网络到复杂架构,涵盖深度学习的各种关键概念和技术,使用TensorFlow进行模型构建和训练,适合作为入门深度学习的资源。1.深度学习基础与理论框架在当今的人工智能领域,深度学习以其强大的模式识别能力,已经成为了众多技术革新的核心。本章将
- 深度学习模型:从基础到前沿的技术解析与实践指南
爱吃青菜的大力水手
深度学习人工智能
深度学习模型全面解析文章框架,结合代码演示与图形展示,内容深入浅出:深度学习模型:从基础到前沿的技术解析与实践指南第一章深度学习基础与核心思想1.1深度学习的本质与优势表示学习理论:通过多层非线性变换自动提取数据特征,无需人工设计特征(如CNN对边缘→纹理→物体的逐层抽象)与传统机器学习的对比:以ImageNet分类为例,AlexNet将Top-5错误率从26.2%降至15.3%,证明了深度学习的
- 大模型时代开发者,谁最吃香?
程序员差不多先生
AI-nativeAIGClangchainpaddle
随着大模型技术的快速发展和广泛应用,对相关工程人才的需求正在发生显著变化。以下是从技术落地到实际应用阶段,预计需求大增的工程人员类型及其核心技能方向:1.大模型核心研发与调优AI/ML研究人员与工程师需求点:模型架构创新(如稀疏化训练、MoE)、训练效率优化(降低算力成本)、垂直领域微调(医学、法律等)。技能:深度学习理论、分布式训练框架(Megatron-LM、DeepSpeed)、领域迁移学习
- 2020-06-23 暑期学习日更计划(机器学习入门之路(资源汇总)+概率论)
苹果酱0567
面试题汇总与解析课程设计springbootvue.jsjavamysql
机器学习入门前言 说实话,机器学习想学好真心不易,很多时候都感觉自己学得云里雾里。以前一段时间自己为了完成毕业设计,在机器学习的理论部分并没有深究,仅仅通过TensorFlow框架力求快速实现模型。现在来看,很多时候因为基础知识不牢固,一些问题很难想通。而现在暑假正好有一大块可以自由学习的时间,希望自己能重新学习一下关于机器学习、或是深度学习理论方面的知识,并且通过一些项目,让自己更好的熟悉人工
- 迁移学习(基础)
Psycho_MrZhang
FineTuning迁移学习人工智能机器学习
迁移学习理论目标迁移学习中的有关概念掌握迁移学习的两种方式概念预训练模型微调微调脚本预训练模型(Pretrainedmodel)一般情况下预训练模型都是大型模型,具备复杂的网络结构,众多的参数量,以及足够大的数据集进行训练而产生的模型,在NLP领域,预训练模型往往是语言模型,因为语言模型是无监督的,可以获得大量的语料,同时语言模型优势许多经典NLP任务的基础,如:机器翻译文本生成阅读理解常见预训练
- 【强化学习理论】状态价值函数与动作价值函数系列公式推导
Mocode
人工智能笔记
由于时常对状态价值函数与动作价值函数之间的定义区别、公式关系迷惑不清,此次进行梳理并作记录。理解公式推导需要先了解基础定义中几个概念。文章目录基础定义奖励函数回报价值价值函数状态转移矩阵策略状态转移函数状态价值函数动作价值函数状态价值函数与动作价值函数之间的关系==关系1====关系2==贝尔曼方程(BellmanEquation)贝尔曼期望方程(BellmanExpectationEquatio
- 数据结构与算法实践指南:C++实现与应用
脑叔
本文还有配套的精品资源,点击获取简介:在这个名为"datastructures-algorithms-practice"的存储库中,作者通过大量练习题和项目实践来提升数据结构和算法的理解和应用。存储库中包含使用C++语言实现的各种数据结构如链表、树、图等,以及多种排序和搜索算法。这些练习不仅有助于学习理论知识,而且通过动手解决实际问题来巩固理解,并提高编程技能。此外,该资源还可能包含对算法进行分类
- ResNet 教程:理解并实现针对 CIFAR-10 的残差网络
爱看烟花的码农
DLResNet
本教程提供了关于残差网络(ResNet)的全面指南,这是一种革命性的深度学习架构,改变了图像分类任务。我们将涵盖残差学习理论、ResNet架构、在PyTorch中针对CIFAR-10数据集的实现,以及训练和调试的实用建议。本教程适合初学者和高级实践者,包含详细的解释和代码。1.ResNet简介1.1什么是ResNet?ResNet由何凯明等人在2015年的论文“DeepResidualLearni
- AI 图像识别技术在医疗领域的创新应用:从原理到实际项目落地
算法探索者
人工智能
在科技飞速发展的当下,人工智能(AI)已成为推动各行业变革的关键力量,医疗领域也不例外。AI图像识别技术凭借其卓越的图像分析能力,为医疗行业带来了前所未有的机遇,在疾病诊断、健康管理和手术规划等多个方面展现出巨大潜力。本文将深入剖析AI图像识别技术在医疗领域的创新应用,带你从技术原理出发,一步步了解其在实际项目中的落地实践。AI图像识别技术的原理AI图像识别技术基于深度学习理论,通过构建复杂的神经
- LLM大模型教程——什么是AI大模型
西木风落
AI大模型人工智能
引言当GPT-4展现出惊人的上下文理解能力,当StableDiffusion创造出媲美人类画师的图像作品,当AlphaFold2破解蛋白质折叠密码——这些里程碑事件标志着人工智能发展进入大模型主导的新纪元。本综述将深入解析这一技术革命的核心载体——AI大模型。一、AI大模型是什么概念:AI大模型,本质上是基于深度学习理论构建的超大规模模型。这些模型借助海量数据训练,拥有强大的泛化能力,能够处理多种
- 《神经网络与深度学习》邱希鹏 学习笔记(4)
第89号
神经网络与深度学习学习笔记神经网络机器学习
《神经网络与深度学习》邱希鹏学习笔记(4)完成进度第二章机器学习概述机器学习算法的类型数据的特征表示传统的特征学习特征选择特征抽取深度学习方法评价指标理论和定理PAC学习理论没有免费午餐定理奥卡姆剃刀原理丑小鸭定理归纳偏置自我理解代码实现不同基函数实现最小二乘法实现梯度下降法完成进度…第二章(2)第二章(3)第三章…第二章机器学习概述第二章首先介绍机器学习的基本概念和基本要素,并较为详细地描述一个
- 【迁移学习入门之域适应的背景、理论与方法】进一步理解迁移学习啦?
985小水博一枚呀
深度学习学习笔记迁移学习人工智能机器学习域适应
【迁移学习入门之域适应的背景、理论与方法】进一步理解迁移学习啦?【迁移学习入门之域适应的背景、理论与方法】进一步理解迁移学习啦?文章目录【迁移学习入门之域适应的背景、理论与方法】进一步理解迁移学习啦?1.背景介绍2.理论基础2.1分布差异(DomainShift)2.2迁移学习理论(TransferLearningTheory)2.3领域不变特征(Domain-invariantFeatures)
- 如果我想成为一名大数据和算法工程师,我需要学会哪些技能,获取大厂的offer
红豆和绿豆
杂谈大数据算法
成为一名大数据和算法工程师并获取大厂Offer,需要掌握一系列核心技能,并具备丰富的项目经验与扎实的理论基础。以下是详细的技能要求和建议:---###**1.数学与理论基础**-**数学知识**:掌握线性代数、微积分、概率论和统计学,这些是设计和理解算法的基础。-**机器学习理论**:深入理解常见机器学习算法(如线性回归、逻辑回归、决策树、随机森林、SVM、K-means等),了解其原理、优缺点及
- 无人机学习入门
一颗微竹
无人机无人机
设备:电脑+遥控器+小飞机+fpv+充电器+各种工具配件设备最开始只有电脑,慢慢的东西越来越多。学习理论知识空域与航空法律法规、安全教育无人机基础(在mooc平台和智慧职教平台上很多课程,当然B站也很多,自学基础内容)目录大概如下:1)无人机的历史2)无人机分类3)无人机系统组成(直升机、多旋翼、固定翼无人机、其他特殊结构)4)无人机飞行原理、空气动力学5)飞行控制、导航系统6)任务载荷学习实践知
- 如何增强机器学习基础,提升大模型面试通过概率
weixin_40941102
机器学习面试人工智能
我的好朋友没有通过面试所以我给我的好朋友准备了这一篇学习路线随着大模型(如Transformer、GPT-4、LLaMA等)在自然语言处理(NLP)、计算机视觉(CV)和多模态任务中的广泛应用,AI行业的招聘竞争愈发激烈。面试官不仅要求候选人熟练使用深度学习框架(如PyTorch、TensorFlow),还希望他们具备扎实的机器学习理论基础、算法实现能力和实际问题解决经验。本文将从机器学习基础入手
- 用数据唤醒深度好眠,时序数据库 TDengine 助力安提思脑科学研究
涛思数据(TDengine)
时序数据库tdengine数据库
在智能医疗与脑科学快速发展的今天,高效的数据处理能力已成为突破创新的关键。安提思专注于睡眠监测与神经调控,基于人工智能和边缘计算,实现从生理体征监测、智能干预到效果评估的闭环。面对海量生理数据的存储与实时计算需求,安提思选择TDengine云服务作为核心时序数据库,借助其高效的数据压缩能力和毫秒级查询性能,确保精准分析与稳定运行。目前,安提思已完成经颅磁刺激系统的医疗器械型式检验,并计划开展多中心
- 如何高效准备PostgreSQL认证考试?
leegong23111
postgresql数据库
高效准备PostgreSQL中级认证考试,可从知识储备、技能提升、模拟考试等方面入手,以下是具体建议:深入学习理论知识系统学习核心知识:依据考试大纲,对PostgreSQL的体系结构、数据类型、SQL语言、事务处理、存储过程、索引等核心知识进行系统学习。可以参考《PostgreSQL10HighPerformance》《ProPostgreSQL》等书籍,深入理解原理和概念。研究官方文档:Post
- 聚类分析tensorflow实例_新手必看的机器学习算法集锦(聚类篇)
道酝欣赏
继上一篇《机器学习算法之分类》中大致梳理了一遍在机器学习中常用的分类算法,类似的,这一姊妹篇中将会梳理一遍机器学习中的聚类算法,最后也会拓展一些其他无监督学习的方法供了解学习。1.机器学习机器学习是近20多年兴起的一门多领域交叉学科,它涉及到概率论、统计学、计算机科学以及软件工程等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。机器学习算法是一类能从数据中自动分析获得规律
- 什么是机器学习?
CM莫问
机器学习模型机器学习人工智能算法
一、概念(维基百科)机器学习是人工智能的一个分支。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。二、主要特点机器学习的主要特点包括:1、数据驱动:机器学习模型的性能主要依赖于输入的数据。数据的质量和数量直接影响模型的准确性和泛化能力,所谓“Garbagein,garbag
- 【自学笔记】机器学习基础知识点总览-持续更新
Long_poem
笔记机器学习人工智能
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录机器学习重点知识点总览一、机器学习基础概念二、机器学习理论基础三、机器学习算法1.监督学习2.无监督学习3.强化学习四、机器学习处理流程五、机器学习常见问题与解决方法六、机器学习应用领域总结机器学习重点知识点总览一、机器学习基础概念定义:机器学习是一种人工智能技术,通过对数据的学习和分析,让计算机系统自动提高其性能。本质:找到
- 【机器学习理论】朴素贝叶斯网络
SUNX-T
机器学习机器学习概率论人工智能
基础知识:先验概率:对某个事件发生的概率的估计。可以是基于历史数据的估计,可以由专家知识得出等等。一般是单独事件概率。后验概率:指某件事已经发生,计算事情发生是由某个因素引起的概率。一般是一个条件概率。条件概率:条件事件发生后,另一个事件发生的概率。一般的形式为P(B∣A)P(B|A)P(B∣A),表示AAA发生的条件下BBB发生的概率。P(B∣A)=P(AB)P(A)P(B|A)=\frac{P
- 从脑科学角度分析高效学习方法
ka__ka__
经历思考学习方法
从脑科学角度分析高效学习方法先说说为什么要从脑科学角度分析高效学习方法。很多时候,关于高效学习方法,人们往往都是参考成功人士或者大神学霸的经验分享。但是,这种非常个人化并且主观性很强的东西一般没有很强的广泛使用性。那么如何找到更加科学的更加客观的高效学习方法呢?针对这个问题,应该从事物本质出发,按照第一性原理来思考。从第一性原理分析,学习知识的本质在某种程度上就是让大脑对特定的知识产出对应的神经网
- Spring的注解积累
yijiesuifeng
spring注解
用注解来向Spring容器注册Bean。
需要在applicationContext.xml中注册:
<context:component-scan base-package=”pagkage1[,pagkage2,…,pagkageN]”/>。
如:在base-package指明一个包
<context:component-sc
- 传感器
百合不是茶
android传感器
android传感器的作用主要就是来获取数据,根据得到的数据来触发某种事件
下面就以重力传感器为例;
1,在onCreate中获得传感器服务
private SensorManager sm;// 获得系统的服务
private Sensor sensor;// 创建传感器实例
@Override
protected void
- [光磁与探测]金吕玉衣的意义
comsci
这是一个古代人的秘密:现在告诉大家
信不信由你们:
穿上金律玉衣的人,如果处于灵魂出窍的状态,可以飞到宇宙中去看星星
这就是为什么古代
- 精简的反序打印某个数
沐刃青蛟
打印
以前看到一些让求反序打印某个数的程序。
比如:输入123,输出321。
记得以前是告诉你是几位数的,当时就抓耳挠腮,完全没有思路。
似乎最后是用到%和/方法解决的。
而今突然想到一个简短的方法,就可以实现任意位数的反序打印(但是如果是首位数或者尾位数为0时就没有打印出来了)
代码如下:
long num, num1=0;
- PHP:6种方法获取文件的扩展名
IT独行者
PHP扩展名
PHP:6种方法获取文件的扩展名
1、字符串查找和截取的方法
1
$extension
=
substr
(
strrchr
(
$file
,
'.'
), 1);
2、字符串查找和截取的方法二
1
$extension
=
substr
- 面试111
文强chu
面试
1事务隔离级别有那些 ,事务特性是什么(问到一次)
2 spring aop 如何管理事务的,如何实现的。动态代理如何实现,jdk怎么实现动态代理的,ioc是怎么实现的,spring是单例还是多例,有那些初始化bean的方式,各有什么区别(经常问)
3 struts默认提供了那些拦截器 (一次)
4 过滤器和拦截器的区别 (频率也挺高)
5 final,finally final
- XML的四种解析方式
小桔子
domjdomdom4jsax
在平时工作中,难免会遇到把 XML 作为数据存储格式。面对目前种类繁多的解决方案,哪个最适合我们呢?在这篇文章中,我对这四种主流方案做一个不完全评测,仅仅针对遍历 XML 这块来测试,因为遍历 XML 是工作中使用最多的(至少我认为)。 预 备 测试环境: AMD 毒龙1.4G OC 1.5G、256M DDR333、Windows2000 Server
- wordpress中常见的操作
aichenglong
中文注册wordpress移除菜单
1 wordpress中使用中文名注册解决办法
1)使用插件
2)修改wp源代码
进入到wp-include/formatting.php文件中找到
function sanitize_user( $username, $strict = false
- 小飞飞学管理-1
alafqq
管理
项目管理的下午题,其实就在提出问题(挑刺),分析问题,解决问题。
今天我随意看下10年上半年的第一题。主要就是项目经理的提拨和培养。
结合我自己经历写下心得
对于公司选拔和培养项目经理的制度有什么毛病呢?
1,公司考察,选拔项目经理,只关注技术能力,而很少或没有关注管理方面的经验,能力。
2,公司对项目经理缺乏必要的项目管理知识和技能方面的培训。
3,公司对项目经理的工作缺乏进行指
- IO输入输出部分探讨
百合不是茶
IO
//文件处理 在处理文件输入输出时要引入java.IO这个包;
/*
1,运用File类对文件目录和属性进行操作
2,理解流,理解输入输出流的概念
3,使用字节/符流对文件进行读/写操作
4,了解标准的I/O
5,了解对象序列化
*/
//1,运用File类对文件目录和属性进行操作
//在工程中线创建一个text.txt
- getElementById的用法
bijian1013
element
getElementById是通过Id来设置/返回HTML标签的属性及调用其事件与方法。用这个方法基本上可以控制页面所有标签,条件很简单,就是给每个标签分配一个ID号。
返回具有指定ID属性值的第一个对象的一个引用。
语法:
&n
- 励志经典语录
bijian1013
励志人生
经典语录1:
哈佛有一个著名的理论:人的差别在于业余时间,而一个人的命运决定于晚上8点到10点之间。每晚抽出2个小时的时间用来阅读、进修、思考或参加有意的演讲、讨论,你会发现,你的人生正在发生改变,坚持数年之后,成功会向你招手。不要每天抱着QQ/MSN/游戏/电影/肥皂剧……奋斗到12点都舍不得休息,看就看一些励志的影视或者文章,不要当作消遣;学会思考人生,学会感悟人生
- [MongoDB学习笔记三]MongoDB分片
bit1129
mongodb
MongoDB的副本集(Replica Set)一方面解决了数据的备份和数据的可靠性问题,另一方面也提升了数据的读写性能。MongoDB分片(Sharding)则解决了数据的扩容问题,MongoDB作为云计算时代的分布式数据库,大容量数据存储,高效并发的数据存取,自动容错等是MongoDB的关键指标。
本篇介绍MongoDB的切片(Sharding)
1.何时需要分片
&nbs
- 【Spark八十三】BlockManager在Spark中的使用场景
bit1129
manager
1. Broadcast变量的存储,在HttpBroadcast类中可以知道
2. RDD通过CacheManager存储RDD中的数据,CacheManager也是通过BlockManager进行存储的
3. ShuffleMapTask得到的结果数据,是通过FileShuffleBlockManager进行管理的,而FileShuffleBlockManager最终也是使用BlockMan
- yum方式部署zabbix
ronin47
yum方式部署zabbix
安装网络yum库#rpm -ivh http://repo.zabbix.com/zabbix/2.4/rhel/6/x86_64/zabbix-release-2.4-1.el6.noarch.rpm 通过yum装mysql和zabbix调用的插件还有agent代理#yum install zabbix-server-mysql zabbix-web-mysql mysql-
- Hibernate4和MySQL5.5自动创建表失败问题解决方法
byalias
J2EEHibernate4
今天初学Hibernate4,了解了使用Hibernate的过程。大体分为4个步骤:
①创建hibernate.cfg.xml文件
②创建持久化对象
③创建*.hbm.xml映射文件
④编写hibernate相应代码
在第四步中,进行了单元测试,测试预期结果是hibernate自动帮助在数据库中创建数据表,结果JUnit单元测试没有问题,在控制台打印了创建数据表的SQL语句,但在数据库中
- Netty源码学习-FrameDecoder
bylijinnan
javanetty
Netty 3.x的user guide里FrameDecoder的例子,有几个疑问:
1.文档说:FrameDecoder calls decode method with an internally maintained cumulative buffer whenever new data is received.
为什么每次有新数据到达时,都会调用decode方法?
2.Dec
- SQL行列转换方法
chicony
行列转换
create table tb(终端名称 varchar(10) , CEI分值 varchar(10) , 终端数量 int)
insert into tb values('三星' , '0-5' , 74)
insert into tb values('三星' , '10-15' , 83)
insert into tb values('苹果' , '0-5' , 93)
- 中文编码测试
ctrain
编码
循环打印转换编码
String[] codes = {
"iso-8859-1",
"utf-8",
"gbk",
"unicode"
};
for (int i = 0; i < codes.length; i++) {
for (int j
- hive 客户端查询报堆内存溢出解决方法
daizj
hive堆内存溢出
hive> select * from t_test where ds=20150323 limit 2;
OK
Exception in thread "main" java.lang.OutOfMemoryError: Java heap space
问题原因: hive堆内存默认为256M
这个问题的解决方法为:
修改/us
- 人有多大懒,才有多大闲 (评论『卓有成效的程序员』)
dcj3sjt126com
程序员
卓有成效的程序员给我的震撼很大,程序员作为特殊的群体,有的人可以这么懒, 懒到事情都交给机器去做 ,而有的人又可以那么勤奋,每天都孜孜不倦得做着重复单调的工作。
在看这本书之前,我属于勤奋的人,而看完这本书以后,我要努力变成懒惰的人。
不要在去庞大的开始菜单里面一项一项搜索自己的应用程序,也不要在自己的桌面上放置眼花缭乱的快捷图标
- Eclipse简单有用的配置
dcj3sjt126com
eclipse
1、显示行号 Window -- Prefences -- General -- Editors -- Text Editors -- show line numbers
2、代码提示字符 Window ->Perferences,并依次展开 Java -> Editor -> Content Assist,最下面一栏 auto-Activation
- 在tomcat上面安装solr4.8.0全过程
eksliang
Solrsolr4.0后的版本安装solr4.8.0安装
转载请出自出处:
http://eksliang.iteye.com/blog/2096478
首先solr是一个基于java的web的应用,所以安装solr之前必须先安装JDK和tomcat,我这里就先省略安装tomcat和jdk了
第一步:当然是下载去官网上下载最新的solr版本,下载地址
- Android APP通用型拒绝服务、漏洞分析报告
gg163
漏洞androidAPP分析
点评:记得曾经有段时间很多SRC平台被刷了大量APP本地拒绝服务漏洞,移动安全团队爱内测(ineice.com)发现了一个安卓客户端的通用型拒绝服务漏洞,来看看他们的详细分析吧。
0xr0ot和Xbalien交流所有可能导致应用拒绝服务的异常类型时,发现了一处通用的本地拒绝服务漏洞。该通用型本地拒绝服务可以造成大面积的app拒绝服务。
针对序列化对象而出现的拒绝服务主要
- HoverTree项目已经实现分层
hvt
编程.netWebC#ASP.ENT
HoverTree项目已经初步实现分层,源代码已经上传到 http://hovertree.codeplex.com请到SOURCE CODE查看。在本地用SQL Server 2008 数据库测试成功。数据库和表请参考:http://keleyi.com/a/bjae/ue6stb42.htmHoverTree是一个ASP.NET 开源项目,希望对你学习ASP.NET或者C#语言有帮助,如果你对
- Google Maps API v3: Remove Markers 移除标记
天梯梦
google maps api
Simply do the following:
I. Declare a global variable:
var markersArray = [];
II. Define a function:
function clearOverlays() {
for (var i = 0; i < markersArray.length; i++ )
- jQuery选择器总结
lq38366
jquery选择器
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
- 基础数据结构和算法六:Quick sort
sunwinner
AlgorithmQuicksort
Quick sort is probably used more widely than any other. It is popular because it is not difficult to implement, works well for a variety of different kinds of input data, and is substantially faster t
- 如何让Flash不遮挡HTML div元素的技巧_HTML/Xhtml_网页制作
刘星宇
htmlWeb
今天在写一个flash广告代码的时候,因为flash自带的链接,容易被当成弹出广告,所以做了一个div层放到flash上面,这样链接都是a触发的不会被拦截,但发现flash一直处于div层上面,原来flash需要加个参数才可以。
让flash置于DIV层之下的方法,让flash不挡住飘浮层或下拉菜单,让Flash不档住浮动对象或层的关键参数:wmode=opaque。
方法如下:
- Mybatis实用Mapper SQL汇总示例
wdmcygah
sqlmysqlmybatis实用
Mybatis作为一个非常好用的持久层框架,相关资料真的是少得可怜,所幸的是官方文档还算详细。本博文主要列举一些个人感觉比较常用的场景及相应的Mapper SQL写法,希望能够对大家有所帮助。
不少持久层框架对动态SQL的支持不足,在SQL需要动态拼接时非常苦恼,而Mybatis很好地解决了这个问题,算是框架的一大亮点。对于常见的场景,例如:批量插入/更新/删除,模糊查询,多条件查询,联表查询,