- Python 数据挖掘实战: 关联规则与聚类分析,解锁数据价值的钥匙
清水白石008
pythonPython题库python数据挖掘动画
Python数据挖掘实战:关联规则与聚类分析,解锁数据价值的钥匙引言在数字化浪潮席卷全球的今天,数据已成为企业和组织最重要的战略资产。海量数据蕴藏着巨大的价值,等待我们去挖掘和发现。数据挖掘(DataMining),作为从海量数据中提取有价值知识和模式的关键技术,正日益受到各行各业的重视。它如同探矿者的火眼金睛,能够穿透数据的迷雾,发现隐藏在背后的规律和趋势,为商业决策、科学研究和社会发展提供强有
- 010 【入门】链表入门题目-合并两个有序链表
要天天开心啊
算法专栏链表数据结构
合并两个有序链表|[算法]-[中级]-[链表]▶JDK8+|⏱️O(m+n)核心代码实现packageclass010;//将两个升序链表合并为一个新的升序链表并返回//新链表是通过拼接给定的两个链表的所有节点组成的//测试链接:https://leetcode.cn/problems/merge-two-sorted-lists/publicclassMergeTwoLists{//链表节点定义
- 008 【入门】算法和数据结构简介
要天天开心啊
算法专栏算法数据结构
算法与数据结构系统概览|[算法]-[基础]-[通用]一、算法分类与应用1.硬计算类算法|[算法]-[中级]-[通用]特点应用场景复杂度特征-精确求解问题-可能带来较高计算复杂度-大厂笔试/面试-ACM竞赛-所有程序员岗位必考⏱️通常为O(n)~O(n²)//[示例]快速排序算法-分治思想核心实现publicvoidquickSort(int[]arr,intleft,intright){if(le
- 莫队算法 —— 将暴力玩出花
秒啦
算法
莫队算法——将暴力玩出花一、为什么需要莫队?——暴力法的瓶颈我们已经学会了用分块处理一些在线的区间问题。现在,我们来看一类特殊的离线区间查询问题。“离线”意味着我们可以把所有查询先读进来,再按我们喜欢的顺序去处理它们。思考一个问题:给定一个长度为N的数组,M次询问。每次询问一个区间[l,r],问区间内有多少种数字至少出现了2次?那我们回到最朴素的暴力。纯暴力:对于每个询问(l,r),都for一遍,
- Web3前沿科技:开启数字资产交易新征程
AI天才研究院
AI大模型企业级应用开发实战AgenticAI实战AI人工智能与大数据web3科技ai
Web3前沿科技:开启数字资产交易新征程关键词:Web3、数字资产交易、区块链、智能合约、去中心化金融摘要:本文聚焦于Web3前沿科技在数字资产交易领域的应用与发展。详细阐述了Web3的核心概念、相关技术原理,包括区块链、智能合约等。通过具体的算法原理和Python代码示例,深入剖析了数字资产交易在Web3环境下的运行机制。同时,结合实际项目案例,讲解了开发环境搭建、代码实现与解读。探讨了Web3
- 高斯混合模型GMM&K均值(十三-1)——K均值是高斯混合模型的特例
phoenix@Capricornus
模式识别与机器学习均值算法机器学习算法
EM算法与K均值算法的关系K均值可以看成是高斯混合模型的特例。对K均值算法与EM算法进行比较后,可以发现它们之间有很大的相似性。K均值算法将数据点硬(hard)分配到聚类中,每个数据点唯一地与一个聚类相关联,而EM算法基于后验概率进行软(soft)分配。事实上,可以从EM算法推导出K均值算法。考虑一个高斯混合模型,其中混合分量的协方差矩阵由σ2I{\sigma^2}Iσ2I给出,其中σ2{\sig
- 基于机器学习的智能文本分类技术研究与应用
在当今数字化时代,文本数据的爆炸式增长给信息管理和知识发现带来了巨大的挑战。从新闻文章、社交媒体帖子到企业文档和学术论文,海量的文本数据需要高效地分类和管理,以便用户能够快速找到所需信息。传统的文本分类方法主要依赖于人工规则和关键词匹配,这些方法不仅效率低下,而且难以应对复杂多变的文本内容。近年来,机器学习技术的快速发展为文本分类提供了一种高效、自动化的解决方案。一、机器学习在文本分类中的应用概述
- 基于灰色马尔科夫模型预测人口数量,是一种结合灰色系统理论(处理少数据、不确定性)与马尔科夫链(描述随机波动)的融合预测方法
利用灰色模型捕捉人口变化的总体趋势,再通过马尔科夫链修正因随机因素导致的预测偏差,从而提高预测精度。一、模型理论基础灰色系统理论原理(核心:处理少数据、部分信息未知的系统)差异信息原理:系统内外的差异是信息源,人口数据的时间序列差异蕴含变化规律。解的非唯一性原理:信息不完全时,预测结果存在多个可能区间(与马尔科夫状态划分契合)。最小信息原理:仅需少量历史数据(通常≥4个)即可建模,适合人口统计资料
- 《Python数据分析与挖掘实战》Chapter8中医证型关联规则挖掘笔记
茫茫大地真干净
机器学习Python数据挖掘
最近在学习《Python数据分析与挖掘实战》中的案例,写写自己的心得。代码分为两大部分:1.读取数据并进行聚类分析2.应用Apriori关联规则挖掘规律1.聚类部分函数分析:defprogrammer_1():datafile="C:/Users/longming/Desktop/chapter8/data/data.xls"processedfile="C:/Users/longming/Des
- Practical TLA+ 项目中的Dekker算法形式化验证
焦习娜Samantha
PracticalTLA+项目中的Dekker算法形式化验证practical-tla-plusSourceCodefor'PracticalTLA+'byHillelWayne项目地址:https://gitcode.com/gh_mirrors/pr/practical-tla-plus概述本文分析PracticalTLA+项目中关于Dekker互斥算法的形式化规范。Dekker算法是解决多线
- 【C++算法竞赛】前缀和+桶数组
YLCHUP
C++算法技巧算法c++开发语言数据结构哈希算法c语言笔记
文章目录1.前缀和基础2.算法原理3.例题讲解[P1114“非常男女”计划](https://www.luogu.com.cn/problem/P1114)[P11965[GESP202503七级]等价消除](https://www.luogu.com.cn/problem/P11965)[P10724[GESP202406七级]区间乘积](https://www.luogu.com.cn/pro
- 【机器学习与数据挖掘实战 | 医疗】案例18:基于Apriori算法的中医证型关联规则分析
Francek Chen
机器学习与数据挖掘实战机器学习数据挖掘Aprioripython关联规则人工智能
【作者主页】FrancekChen【专栏介绍】⌈⌈⌈机器学习与数据挖掘实战⌋⌋⌋机器学习是人工智能的一个分支,专注于让计算机系统通过数据学习和改进。它利用统计和计算方法,使模型能够从数据中自动提取特征并做出预测或决策。数据挖掘则是从大型数据集中发现模式、关联和异常的过程,旨在提取有价值的信息和知识。机器学习为数据挖掘提供了强大的分析工具,而数据挖掘则是机器学习应用的重要领域,两者相辅相成,共同推动
- 提示词编程语言设计艺术探索
AI天才研究院
计算AI人工智能与大数据AI大模型企业级应用开发实战javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
《提示词编程语言设计艺术探索》关键词:提示词编程语言,设计艺术,编程语言设计,核心算法,实例分析,项目实战摘要:本文旨在深入探讨提示词编程语言的设计艺术,从基础概念到核心算法,再到实际应用和未来趋势,全面解析这一领域的关键技术和设计理念。通过具体的实例分析和项目实战,帮助读者更好地理解和掌握提示词编程语言的设计与实现。引言与概述1.1提示词编程语言的背景和重要性提示词编程语言(Prompt-Bas
- linux日志文件详解
MagnumOvO
云计算linux5Glinux运维centos
目录一、日志文件的分类二、日志文件位置三、常见日志文件1.分析日志文件2.内核及系统日志四、日志消息等级五、日志文件分析1.用户日志2.程序日志六、日志分析注意事项一、日志文件的分类日志文件是用于记录Linux系统中各种运行消息的文件,相当于Linux主机的“日记”。不同的日志文件记载了不同类型的信息,如Linux内核消息、用户登录事件、程序错误等·日志文件对于诊断和解决系统中的问题很有帮助,因为
- 误差的回响:反向传播算法与神经网络的惊天逆转
田园Coder
人工智能科普人工智能科普
当专家系统在20世纪80年代初期大放异彩,成为人工智能实用化的耀眼明星时,另一股曾经被宣判“死刑”的力量——连接主义(神经网络)——正在寒冬的冻土下悄然涌动,孕育着一场惊天动地的复苏。马文·明斯基和西摩·帕尔特在1969年《感知机》专著中那精准而冷酷的理论批判,如同沉重的封印,将多层神经网络的研究禁锢了近二十年。他们指出的核心死结——缺乏有效算法来训练具有隐藏层的网络——仿佛一道无法逾越的天堑。单
- 10招提升SQL性能的实战技巧
快乐才是自己的
sqlmysqlsqlmysqloracledatabasehadoop大数据
SQL语句常见性能优化方案在数据库应用中,SQL性能优化是核心技术要点。以下是经过验证的优化策略,按关键维度分类:一、索引优化精准索引覆盖对高频查询的WHERE、JOIN、ORDERBY字段建立索引复合索引遵循最左前缀原则:索引(a,b,c)仅支持WHEREa=?或WHEREa=?ANDb=?示例:将SELECT*FROMordersWHEREstatus='shipped'改为CREATEIND
- C++ Lambda表达式详解:从入门到精通
Jay_515
c++Lambda
Lambda表达式是C11引入的最重要特性之一,它彻底改变了我们在C中编写函数对象的方式。本文将带你全面掌握Lambda表达式的使用技巧!1.什么是Lambda表达式?Lambda表达式是C++11引入的一种匿名函数对象,它允许我们在需要函数的地方内联定义函数,无需单独命名。Lambda的出现极大简化了代码,特别是在使用STL算法时。为什么需要Lambda?简化代码:避免为简单操作单独编写函数对象
- Tiktok App 登录账号、密码、验证码 XOR 加密算法
抖音App登录账号、密码、验证码XOR加密算法%E9n+z,\&R1a4b.^流程分析登录TiktokAPP时,通过抓包发现账号密码是非明文传输的。getUserProfile($userId,$secUid);echo"\n\n视频列表:\n";echo$tiktok->getMixList($userId);//示例:加密后的密码hex字符串$encrypted_hex="7472607771
- mongodb和redis的区别:
huangbfeng
mongodbredis数据库
1、内存管理机制Redis数据全部存在内存,定期写入磁盘,当内存不够时,可以选择指定的LRU算法删除数据。MongoDB数据存在内存,由linux系统mmap实现,当内存不够时,只将热点数据放入内存,其他数据存在磁盘。2、支持的数据结构Redis支持的数据结构丰富,包括hash、set、list等。MongoDB数据结构比较单一,但是支持丰富的数据表达,索引,最类似关系型数据库,支持的查询语言非常
- 数据库系统工程师简要概括笔记
Mint_Datazzh
数据库系统工程师数据库笔记数据库系统工程师
文章内容仅为粗略总结知识,便于个人复习思考原文链接:数据库系统工程师简要概括笔记–笔墨云烟数据库系统工程师—1.1计算机硬件基础知识数据库系统工程师—1.2计算机体系结构与存储系统数据库系统工程师—1.3安全性、可靠性与系统性能评测基础知识数据库系统工程师—2.程序语言基础知识数据库系统工程师—3.1~3.4线性结构、数组和矩阵、树和二叉树、图数据库系统工程师—3.5排序算法数据库系统工程师—3.
- 结构化数据增强的生成式算法案例:客户交易数据增强
python游乐园
数据深度学习大数据算法学习
1基础信息1.1案例背景这是一个用于增强结构化客户交易数据的生成式算法。这种类型的数据增强在金融、电子商务等领域非常有用,可以帮助解决数据不平衡问题或在小数据集上提高模型性能。1.2问题定义给定原始交易数据集D={x₁,x₂,...,xₙ},其中每条记录包含:交易金额交易时间客户年龄客户收入水平交易类别地理位置是否为欺诈交易(标签)目标:生成与原始数据分布相似但多样化的新样本,同时保持字段间的合理
- LLMs基础学习(八)强化学习专题(7)
汤姆和佩琦
NLP学习Actor-Critic算法
LLMs基础学习(八)强化学习专题(7)文章目录LLMs基础学习(八)强化学习专题(7)Actor-Critic算法基础原理算法流程细节算法优缺点分析算法核心总结视频链接:https://www.bilibili.com/video/BV1MQo4YGEmq/?spm_id_from=333.1387.upload.video_card.click&vd_source=57e4865932ea6c
- Linux 命令:ls
Linuxls命令详细教程一、ls命令概述ls是Linux系统中最常用的命令之一,全称“list”,用于列出目录下的文件和子目录。它不仅能显示文件基本信息,还能通过丰富的选项控制显示格式、排序方式、隐藏文件等,是文件管理的基础工具。资料已经分类整理好:https://pan.quark.cn/s/26d73f7dd8a7二、ls命令基本语法ls[选项][文件或目录]核心选项分类说明(常用选项需熟练
- AI助力基因数据分析:用Python玩转生命密码的秘密
Echo_Wish
前沿技术人工智能人工智能数据分析python
AI助力基因数据分析:用Python玩转生命密码的秘密说到基因数据,听起来是不是感觉有点高大上?其实,基因数据分析正变得越来越“接地气”,而AI正是这条路上的神奇钥匙。今天,咱们就用Python聊聊如何利用AI技术做基因数据分析与建模,帮你破解生命的密码,找到疾病预测、个性化医疗的新路子。一、基因数据为何如此特别?基因组测序技术让我们能够获取人体细胞内数以百万计的DNA序列变异信息。但数据量巨大、
- 【基数排序介绍】
wdwc2
算法设计算法数据结构排序算法
文章目录前言一、基数排序是什么?二、基数排序的步骤(LSD低位优先)1.找出最大数的位数2.对每一位进行排序(从最低位到最高位)三、C++实现1.主函数:基数排序实现四、时间复杂度分析五、基数排序的适用场景六、与其他排序算法对比七、扩展:处理负数的思路总结前言在处理大规模整数排序问题时,比较类排序(如快速排序)可能无法发挥最优性能。本篇博客将详细介绍一种非比较类排序算法:基数排序(RadixSor
- 用Python实现生信分析——功能预测详解
写代码的M教授
生信分析python开发语言
功能预测是生物信息学中的一项重要任务,通过分析基因或蛋白质序列的特征,推测它们的生物学功能。功能预测通常涉及多种方法,包括序列比对、基序识别、机器学习模型等。这些方法可以帮助科学家推断未知基因的功能,从而加速生物学研究的进展。1.功能预测的主要方法(1)同源性比对:通过将未知基因或蛋白质序列与数据库中的已知序列进行比对,识别出同源序列,并推测它们的功能。常用工具包括BLAST、HMMER等。(2)
- 60天python训练计划----day55
DAY55序列预测任务介绍知识点回顾序列预测介绍单步预测多步预测的2种方式序列数据的处理:滑动窗口多输入多输出任务的思路经典机器学习在序列任务上的劣势;以随机森林为例一、序列预测任务介绍1.1序列预测是什么?我们之前接触到的结构化数据,它本身不具备顺序,我们认为每个样本之间独立无关,样本之间即使调换顺序,仍然不影响模型的训练。但是日常中很多数据是存在先后关系的,而他们对应的任务是预测下一步的值,我
- 强化学习-双臂老虎机
transuperb
强化学习人工智能
本篇文章模拟AI玩两个老虎机,AI需要判断出哪个老虎机收益更大,然后根据反馈调整对于不同老虎机的价值判断,如果把这个看作一个简单的强化学习的话,那么AI就是agent,两个老虎机就是environment,AI首先会对两台老虎机有一个预测值Q,预测哪一个的价值高,然后AI通过策略函数判断应该选择哪个老虎机,进行Action后根据Reward更新每个老虎机的价值Value,然后再进行下一次判断,直到
- 基于Python Anaconda环境,使用CNN-LSTM模型预测碳交易价格的完整技术方案
神经网络15044
仿真模型算法机器学习pythoncnnlstm
以下是一个基于PythonAnaconda环境,使用CNN-LSTM模型预测碳交易价格的完整技术方案。内容涵盖数据预处理、模型构建、训练优化、预测可视化和结果分析等核心环节,代码与文字说明共计超过6000字。基于CNN-LSTM的碳交易价格预测系统设计与实现一、项目背景与目标1.1碳交易市场概述碳交易作为应对气候变化的重要市场机制,其价格波动直接影响企业减排决策。准确预测碳价(CarbonEmis
- MySQL索引分类有哪些?
java1234_小锋
mysqlmysql
大家好,我是锋哥。今天分享关于【MySQL索引分类有哪些?】面试题。希望对大家有帮助;MySQL索引分类有哪些?超硬核AI学习资料,现在永久免费了!MySQL中的索引可以根据不同的分类标准分为以下几种类型:1.根据存储方式分类聚集索引(ClusteredIndex):表中的数据行会按照索引顺序存储,即数据的物理顺序和索引顺序一致。每个表最多只能有一个聚集索引。在InnoDB存储引擎中,主键就是聚集
- PHP,安卓,UI,java,linux视频教程合集
cocos2d-x小菜
javaUIlinuxPHPandroid
╔-----------------------------------╗┆
- zookeeper admin 笔记
braveCS
zookeeper
Required Software
1) JDK>=1.6
2)推荐使用ensemble的ZooKeeper(至少3台),并run on separate machines
3)在Yahoo!,zk配置在特定的RHEL boxes里,2个cpu,2G内存,80G硬盘
数据和日志目录
1)数据目录里的文件是zk节点的持久化备份,包括快照和事务日
- Spring配置多个连接池
easterfly
spring
项目中需要同时连接多个数据库的时候,如何才能在需要用到哪个数据库就连接哪个数据库呢?
Spring中有关于dataSource的配置:
<bean id="dataSource" class="com.mchange.v2.c3p0.ComboPooledDataSource"
&nb
- Mysql
171815164
mysql
例如,你想myuser使用mypassword从任何主机连接到mysql服务器的话。
GRANT ALL PRIVILEGES ON *.* TO 'myuser'@'%'IDENTIFIED BY 'mypassword' WI
TH GRANT OPTION;
如果你想允许用户myuser从ip为192.168.1.6的主机连接到mysql服务器,并使用mypassword作
- CommonDAO(公共/基础DAO)
g21121
DAO
好久没有更新博客了,最近一段时间工作比较忙,所以请见谅,无论你是爱看呢还是爱看呢还是爱看呢,总之或许对你有些帮助。
DAO(Data Access Object)是一个数据访问(顾名思义就是与数据库打交道)接口,DAO一般在业
- 直言有讳
永夜-极光
感悟随笔
1.转载地址:http://blog.csdn.net/jasonblog/article/details/10813313
精华:
“直言有讳”是阿里巴巴提倡的一种观念,而我在此之前并没有很深刻的认识。为什么呢?就好比是读书时候做阅读理解,我喜欢我自己的解读,并不喜欢老师给的意思。在这里也是。我自己坚持的原则是互相尊重,我觉得阿里巴巴很多价值观其实是基本的做人
- 安装CentOS 7 和Win 7后,Win7 引导丢失
随便小屋
centos
一般安装双系统的顺序是先装Win7,然后在安装CentOS,这样CentOS可以引导WIN 7启动。但安装CentOS7后,却找不到Win7 的引导,稍微修改一点东西即可。
一、首先具有root 的权限。
即进入Terminal后输入命令su,然后输入密码即可
二、利用vim编辑器打开/boot/grub2/grub.cfg文件进行修改
v
- Oracle备份与恢复案例
aijuans
oracle
Oracle备份与恢复案例
一. 理解什么是数据库恢复当我们使用一个数据库时,总希望数据库的内容是可靠的、正确的,但由于计算机系统的故障(硬件故障、软件故障、网络故障、进程故障和系统故障)影响数据库系统的操作,影响数据库中数据的正确性,甚至破坏数据库,使数据库中全部或部分数据丢失。因此当发生上述故障后,希望能重构这个完整的数据库,该处理称为数据库恢复。恢复过程大致可以分为复原(Restore)与
- JavaEE开源快速开发平台G4Studio v5.0发布
無為子
我非常高兴地宣布,今天我们最新的JavaEE开源快速开发平台G4Studio_V5.0版本已经正式发布。
访问G4Studio网站
http://www.g4it.org
2013-04-06 发布G4Studio_V5.0版本
功能新增
(1). 新增了调用Oracle存储过程返回游标,并将游标映射为Java List集合对象的标
- Oracle显示根据高考分数模拟录取
百合不是茶
PL/SQL编程oracle例子模拟高考录取学习交流
题目要求:
1,创建student表和result表
2,pl/sql对学生的成绩数据进行处理
3,处理的逻辑是根据每门专业课的最低分线和总分的最低分数线自动的将录取和落选
1,创建student表,和result表
学生信息表;
create table student(
student_id number primary key,--学生id
- 优秀的领导与差劲的领导
bijian1013
领导管理团队
责任
优秀的领导:优秀的领导总是对他所负责的项目担负起责任。如果项目不幸失败了,那么他知道该受责备的人是他自己,并且敢于承认错误。
差劲的领导:差劲的领导觉得这不是他的问题,因此他会想方设法证明是他的团队不行,或是将责任归咎于团队中他不喜欢的那几个成员身上。
努力工作
优秀的领导:团队领导应该是团队成员的榜样。至少,他应该与团队中的其他成员一样努力工作。这仅仅因为他
- js函数在浏览器下的兼容
Bill_chen
jquery浏览器IEDWRext
做前端开发的工程师,少不了要用FF进行测试,纯js函数在不同浏览器下,名称也可能不同。对于IE6和FF,取得下一结点的函数就不尽相同:
IE6:node.nextSibling,对于FF是不能识别的;
FF:node.nextElementSibling,对于IE是不能识别的;
兼容解决方式:var Div = node.nextSibl
- 【JVM四】老年代垃圾回收:吞吐量垃圾收集器(Throughput GC)
bit1129
垃圾回收
吞吐量与用户线程暂停时间
衡量垃圾回收算法优劣的指标有两个:
吞吐量越高,则算法越好
暂停时间越短,则算法越好
首先说明吞吐量和暂停时间的含义。
垃圾回收时,JVM会启动几个特定的GC线程来完成垃圾回收的任务,这些GC线程与应用的用户线程产生竞争关系,共同竞争处理器资源以及CPU的执行时间。GC线程不会对用户带来的任何价值,因此,好的GC应该占
- J2EE监听器和过滤器基础
白糖_
J2EE
Servlet程序由Servlet,Filter和Listener组成,其中监听器用来监听Servlet容器上下文。
监听器通常分三类:基于Servlet上下文的ServletContex监听,基于会话的HttpSession监听和基于请求的ServletRequest监听。
ServletContex监听器
ServletContex又叫application
- 博弈AngularJS讲义(16) - 提供者
boyitech
jsAngularJSapiAngularProvider
Angular框架提供了强大的依赖注入机制,这一切都是有注入器(injector)完成. 注入器会自动实例化服务组件和符合Angular API规则的特殊对象,例如控制器,指令,过滤器动画等。
那注入器怎么知道如何去创建这些特殊的对象呢? Angular提供了5种方式让注入器创建对象,其中最基础的方式就是提供者(provider), 其余四种方式(Value, Fac
- java-写一函数f(a,b),它带有两个字符串参数并返回一串字符,该字符串只包含在两个串中都有的并按照在a中的顺序。
bylijinnan
java
public class CommonSubSequence {
/**
* 题目:写一函数f(a,b),它带有两个字符串参数并返回一串字符,该字符串只包含在两个串中都有的并按照在a中的顺序。
* 写一个版本算法复杂度O(N^2)和一个O(N) 。
*
* O(N^2):对于a中的每个字符,遍历b中的每个字符,如果相同,则拷贝到新字符串中。
* O(
- sqlserver 2000 无法验证产品密钥
Chen.H
sqlwindowsSQL ServerMicrosoft
在 Service Pack 4 (SP 4), 是运行 Microsoft Windows Server 2003、 Microsoft Windows Storage Server 2003 或 Microsoft Windows 2000 服务器上您尝试安装 Microsoft SQL Server 2000 通过卷许可协议 (VLA) 媒体。 这样做, 收到以下错误信息CD KEY的 SQ
- [新概念武器]气象战争
comsci
气象战争的发动者必须是拥有发射深空航天器能力的国家或者组织....
原因如下:
地球上的气候变化和大气层中的云层涡旋场有密切的关系,而维持一个在大气层某个层次
- oracle 中 rollup、cube、grouping 使用详解
daizj
oraclegroupingrollupcube
oracle 中 rollup、cube、grouping 使用详解 -- 使用oracle 样例表演示 转自namesliu
-- 使用oracle 的样列库,演示 rollup, cube, grouping 的用法与使用场景
--- ROLLUP , 为了理解分组的成员数量,我增加了 分组的计数 COUNT(SAL)
- 技术资料汇总分享
Dead_knight
技术资料汇总 分享
本人汇总的技术资料,分享出来,希望对大家有用。
http://pan.baidu.com/s/1jGr56uE
资料主要包含:
Workflow->工作流相关理论、框架(OSWorkflow、JBPM、Activiti、fireflow...)
Security->java安全相关资料(SSL、SSO、SpringSecurity、Shiro、JAAS...)
Ser
- 初一下学期难记忆单词背诵第一课
dcj3sjt126com
englishword
could 能够
minute 分钟
Tuesday 星期二
February 二月
eighteenth 第十八
listen 听
careful 小心的,仔细的
short 短的
heavy 重的
empty 空的
certainly 当然
carry 携带;搬运
tape 磁带
basket 蓝子
bottle 瓶
juice 汁,果汁
head 头;头部
- 截取视图的图片, 然后分享出去
dcj3sjt126com
OSObjective-C
OS 7 has a new method that allows you to draw a view hierarchy into the current graphics context. This can be used to get an UIImage very fast.
I implemented a category method on UIView to get the vi
- MySql重置密码
fanxiaolong
MySql重置密码
方法一:
在my.ini的[mysqld]字段加入:
skip-grant-tables
重启mysql服务,这时的mysql不需要密码即可登录数据库
然后进入mysql
mysql>use mysql;
mysql>更新 user set password=password('新密码') WHERE User='root';
mysq
- Ehcache(03)——Ehcache中储存缓存的方式
234390216
ehcacheMemoryStoreDiskStore存储驱除策略
Ehcache中储存缓存的方式
目录
1 堆内存(MemoryStore)
1.1 指定可用内存
1.2 驱除策略
1.3 元素过期
2 &nbs
- spring mvc中的@propertysource
jackyrong
spring mvc
在spring mvc中,在配置文件中的东西,可以在java代码中通过注解进行读取了:
@PropertySource 在spring 3.1中开始引入
比如有配置文件
config.properties
mongodb.url=1.2.3.4
mongodb.db=hello
则代码中
@PropertySource(&
- 重学单例模式
lanqiu17
单例Singleton模式
最近在重新学习设计模式,感觉对模式理解更加深刻。觉得有必要记下来。
第一个学的就是单例模式,单例模式估计是最好理解的模式了。它的作用就是防止外部创建实例,保证只有一个实例。
单例模式的常用实现方式有两种,就人们熟知的饱汉式与饥汉式,具体就不多说了。这里说下其他的实现方式
静态内部类方式:
package test.pattern.singleton.statics;
publ
- .NET开源核心运行时,且行且珍惜
netcome
java.net开源
背景
2014年11月12日,ASP.NET之父、微软云计算与企业级产品工程部执行副总裁Scott Guthrie,在Connect全球开发者在线会议上宣布,微软将开源全部.NET核心运行时,并将.NET 扩展为可在 Linux 和 Mac OS 平台上运行。.NET核心运行时将基于MIT开源许可协议发布,其中将包括执行.NET代码所需的一切项目——CLR、JIT编译器、垃圾收集器(GC)和核心
- 使用oscahe缓存技术减少与数据库的频繁交互
Everyday都不同
Web高并发oscahe缓存
此前一直不知道缓存的具体实现,只知道是把数据存储在内存中,以便下次直接从内存中读取。对于缓存的使用也没有概念,觉得缓存技术是一个比较”神秘陌生“的领域。但最近要用到缓存技术,发现还是很有必要一探究竟的。
缓存技术使用背景:一般来说,对于web项目,如果我们要什么数据直接jdbc查库好了,但是在遇到高并发的情形下,不可能每一次都是去查数据库,因为这样在高并发的情形下显得不太合理——
- Spring+Mybatis 手动控制事务
toknowme
mybatis
@Override
public boolean testDelete(String jobCode) throws Exception {
boolean flag = false;
&nbs
- 菜鸟级的android程序员面试时候需要掌握的知识点
xp9802
android
熟悉Android开发架构和API调用
掌握APP适应不同型号手机屏幕开发技巧
熟悉Android下的数据存储
熟练Android Debug Bridge Tool
熟练Eclipse/ADT及相关工具
熟悉Android框架原理及Activity生命周期
熟练进行Android UI布局
熟练使用SQLite数据库;
熟悉Android下网络通信机制,S