1.自定义着色器加载图片
- 创建顶点着色器文件和片元着色器文件
Normal.vsh:
attribute vec4 Position;
attribute vec2 TextureCoords;
varying vec2 TextureCoordsVarying;
void main (void) {
gl_Position = Position;
TextureCoordsVarying = TextureCoords;
}
Normal.fsh:
precision highp float;
uniform sampler2D Texture;
varying vec2 TextureCoordsVarying;
void main (void) {
vec4 mask = texture2D(Texture, TextureCoordsVarying);
gl_FragColor = vec4(mask.rgb, 1.0);
}
- 初始化
- (void)filterInit {
//1. 初始化上下文并设置为当前上下文
self.context = [[EAGLContext alloc] initWithAPI:kEAGLRenderingAPIOpenGLES2];
[EAGLContext setCurrentContext:self.context];
//2.开辟顶点数组内存空间
self.vertices = malloc(sizeof(SenceVertex) * 4);
//3.初始化顶点(0,1,2,3)的顶点坐标以及纹理坐标
self.vertices[0] = (SenceVertex){{-1, 1, 0}, {0, 1}};
self.vertices[1] = (SenceVertex){{-1, -1, 0}, {0, 0}};
self.vertices[2] = (SenceVertex){{1, 1, 0}, {1, 1}};
self.vertices[3] = (SenceVertex){{1, -1, 0}, {1, 0}};
//4.创建图层(CAEAGLLayer)
CAEAGLLayer *layer = [[CAEAGLLayer alloc] init];
//设置图层frame
layer.frame = CGRectMake(0, 100, self.view.frame.size.width, self.view.frame.size.width);
//设置图层的scale
layer.contentsScale = [[UIScreen mainScreen] scale];
//给View添加layer
[self.view.layer addSublayer:layer];
//5.绑定渲染缓存区
[self bindRenderLayer:layer];
//6.获取处理的图片路径
NSString *imagePath = [[[NSBundle mainBundle] resourcePath] stringByAppendingPathComponent:@"kobe.jpg"];
//读取图片
UIImage *image = [UIImage imageWithContentsOfFile:imagePath];
//将JPG图片转换成纹理图片
GLuint textureID = [self createTextureWithImage:image];
//设置纹理ID
self.textureID = textureID; // 将纹理 ID 保存,方便后面切换滤镜的时候重用
//7.设置视口
glViewport(0, 0, self.drawableWidth, self.drawableHeight);
//8.设置顶点缓存区
GLuint vertexBuffer;
glGenBuffers(1, &vertexBuffer);
glBindBuffer(GL_ARRAY_BUFFER, vertexBuffer);
GLsizeiptr bufferSizeBytes = sizeof(SenceVertex) * 4;
glBufferData(GL_ARRAY_BUFFER, bufferSizeBytes, self.vertices, GL_STATIC_DRAW);
//9.设置默认着色器
[self setupNormalShaderProgram]; // 一开始选用默认的着色器
//10.将顶点缓存保存,退出时才释放
self.vertexBuffer = vertexBuffer;
}
//获取渲染缓存区的宽
- (GLint)drawableWidth {
GLint backingWidth;
glGetRenderbufferParameteriv(GL_RENDERBUFFER, GL_RENDERBUFFER_WIDTH, &backingWidth);
return backingWidth;
}
//获取渲染缓存区的高
- (GLint)drawableHeight {
GLint backingHeight;
glGetRenderbufferParameteriv(GL_RENDERBUFFER, GL_RENDERBUFFER_HEIGHT, &backingHeight);
return backingHeight;
}
- 绑定渲染缓存区和帧缓存区
- (void)bindRenderLayer:(CALayer *)layer {
//1.渲染缓存区,帧缓存区对象
GLuint renderBuffer;
GLuint frameBuffer;
//2.获取帧渲染缓存区名称,绑定渲染缓存区以及将渲染缓存区与layer建立连接
glGenRenderbuffers(1, &renderBuffer);
glBindRenderbuffer(GL_RENDERBUFFER, renderBuffer);
[self.context renderbufferStorage:GL_RENDERBUFFER fromDrawable:layer];
//3.获取帧缓存区名称,绑定帧缓存区以及将渲染缓存区附着到帧缓存区上
glGenFramebuffers(1, &frameBuffer);
glBindFramebuffer(GL_FRAMEBUFFER, frameBuffer);
glFramebufferRenderbuffer(GL_FRAMEBUFFER,
GL_COLOR_ATTACHMENT0,
GL_RENDERBUFFER,
renderBuffer);
}
- 从图片中加载纹理
- (GLuint)createTextureWithImage:(UIImage *)image {
//1、将 UIImage 转换为 CGImageRef
CGImageRef cgImageRef = [image CGImage];
//判断图片是否获取成功
if (!cgImageRef) {
NSLog(@"Failed to load image");
exit(1);
}
//2、读取图片的大小,宽和高
GLuint width = (GLuint)CGImageGetWidth(cgImageRef);
GLuint height = (GLuint)CGImageGetHeight(cgImageRef);
//获取图片的rect
CGRect rect = CGRectMake(0, 0, width, height);
//获取图片的颜色空间
CGColorSpaceRef colorSpace = CGColorSpaceCreateDeviceRGB();
//3.获取图片字节数 宽*高*4(RGBA)
void *imageData = malloc(width * height * 4);
//4.创建上下文
/*
参数1:data,指向要渲染的绘制图像的内存地址
参数2:width,bitmap的宽度,单位为像素
参数3:height,bitmap的高度,单位为像素
参数4:bitPerComponent,内存中像素的每个组件的位数,比如32位RGBA,就设置为8
参数5:bytesPerRow,bitmap的没一行的内存所占的比特数
参数6:colorSpace,bitmap上使用的颜色空间 kCGImageAlphaPremultipliedLast:RGBA
*/
CGContextRef context = CGBitmapContextCreate(imageData, width, height, 8, width * 4, colorSpace, kCGImageAlphaPremultipliedLast | kCGBitmapByteOrder32Big);
//将图片翻转过来(图片默认是倒置的)
CGContextTranslateCTM(context, 0, height);
CGContextScaleCTM(context, 1.0f, -1.0f);
CGColorSpaceRelease(colorSpace);
CGContextClearRect(context, rect);
//对图片进行重新绘制,得到一张新的解压缩后的位图
CGContextDrawImage(context, rect, cgImageRef);
//设置图片纹理属性
//5. 获取纹理ID
GLuint textureID;
glGenTextures(1, &textureID);
glBindTexture(GL_TEXTURE_2D, textureID);
//6.载入纹理2D数据
/*
参数1:纹理模式,GL_TEXTURE_1D、GL_TEXTURE_2D、GL_TEXTURE_3D
参数2:加载的层次,一般设置为0
参数3:纹理的颜色值GL_RGBA
参数4:宽
参数5:高
参数6:border,边界宽度
参数7:format
参数8:type
参数9:纹理数据
*/
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, imageData);
//7.设置纹理属性
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
//8.绑定纹理
/*
参数1:纹理维度
参数2:纹理ID,因为只有一个纹理,给0就可以了。
*/
glBindTexture(GL_TEXTURE_2D, 0);
//9.释放context,imageData
CGContextRelease(context);
free(imageData);
//10.返回纹理ID
return textureID;
}
- 初始化着色器程序
- (void)setupNormalShaderProgram {
//设置着色器程序
[self setupShaderProgramWithName:@"Normal"];
}
// 初始化着色器程序
- (void)setupShaderProgramWithName:(NSString *)name {
//1. 获取着色器program
GLuint program = [self programWithShaderName:name];
//2. use Program
glUseProgram(program);
//3. 获取Position,Texture,TextureCoords 的索引位置
GLuint positionSlot = glGetAttribLocation(program, "Position");
GLuint textureSlot = glGetUniformLocation(program, "Texture");
GLuint textureCoordsSlot = glGetAttribLocation(program, "TextureCoords");
//4.激活纹理,绑定纹理ID
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, self.textureID);
//5.纹理sample
glUniform1i(textureSlot, 0);
//6.打开positionSlot 属性并且传递数据到positionSlot中(顶点坐标)
glEnableVertexAttribArray(positionSlot);
glVertexAttribPointer(positionSlot, 3, GL_FLOAT, GL_FALSE, sizeof(SenceVertex), NULL + offsetof(SenceVertex, positionCoord));
//7.打开textureCoordsSlot 属性并传递数据到textureCoordsSlot(纹理坐标)
glEnableVertexAttribArray(textureCoordsSlot);
glVertexAttribPointer(textureCoordsSlot, 2, GL_FLOAT, GL_FALSE, sizeof(SenceVertex), NULL + offsetof(SenceVertex, textureCoord));
//8.保存program,界面销毁则释放
self.program = program;
glUseProgram(self.program);
//绑定buffer
glBindBuffer(GL_ARRAY_BUFFER, self.vertexBuffer);
;
// 清除画布
glClear(GL_COLOR_BUFFER_BIT);
glClearColor(1, 1, 1, 1);
// 重绘
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
//渲染到屏幕上
[self.context presentRenderbuffer:GL_RENDERBUFFER];
}
- 编译链接着色器和program
#pragma mark -shader compile and link
//link Program
- (GLuint)programWithShaderName:(NSString *)shaderName {
//1. 编译顶点着色器/片元着色器
GLuint vertexShader = [self compileShaderWithName:shaderName type:GL_VERTEX_SHADER];
GLuint fragmentShader = [self compileShaderWithName:shaderName type:GL_FRAGMENT_SHADER];
//2. 将顶点/片元附着到program
GLuint program = glCreateProgram();
glAttachShader(program, vertexShader);
glAttachShader(program, fragmentShader);
//3.linkProgram
glLinkProgram(program);
//4.检查是否link成功
GLint linkSuccess;
glGetProgramiv(program, GL_LINK_STATUS, &linkSuccess);
if (linkSuccess == GL_FALSE) {
GLchar messages[256];
glGetProgramInfoLog(program, sizeof(messages), 0, &messages[0]);
NSString *messageString = [NSString stringWithUTF8String:messages];
NSAssert(NO, @"program链接失败:%@", messageString);
exit(1);
}
//5.返回program
return program;
}
//编译shader代码
- (GLuint)compileShaderWithName:(NSString *)name type:(GLenum)shaderType {
//1.获取shader 路径
NSString *shaderPath = [[NSBundle mainBundle] pathForResource:name ofType:shaderType == GL_VERTEX_SHADER ? @"vsh" : @"fsh"];
NSError *error;
NSString *shaderString = [NSString stringWithContentsOfFile:shaderPath encoding:NSUTF8StringEncoding error:&error];
if (!shaderString) {
NSAssert(NO, @"读取shader失败");
exit(1);
}
//2. 创建shader->根据shaderType
GLuint shader = glCreateShader(shaderType);
//3.获取shader source
const char *shaderStringUTF8 = [shaderString UTF8String];
int shaderStringLength = (int)[shaderString length];
glShaderSource(shader, 1, &shaderStringUTF8, &shaderStringLength);
//4.编译shader
glCompileShader(shader);
//5.查看编译是否成功
GLint compileSuccess;
glGetShaderiv(shader, GL_COMPILE_STATUS, &compileSuccess);
if (compileSuccess == GL_FALSE) {
GLchar messages[256];
glGetShaderInfoLog(shader, sizeof(messages), 0, &messages[0]);
NSString *messageString = [NSString stringWithUTF8String:messages];
NSAssert(NO, @"shader编译失败:%@", messageString);
exit(1);
}
//6.返回shader
return shader;
}
-
结果
2.马赛克效果
马赛克效果就是图片的一块相当大小的区域用同一个颜色表示出来,可以认为是大规模的降低图片的分辨率,而让图像的一些细节隐藏起来。
2.1 普通马赛克
-
执行效果
-
思路
- 修改片元着色器文件
注释:
TexSize:纹理图片大小
mosaicSize:一个马赛克的大小
floor(x):GLSL内建函数,返回⼩于/等于X的最大整数值
precision highp float;
uniform sampler2D Texture;
varying vec2 TextureCoordsVarying;
const vec2 TexSize = vec2(400,400);
const vec2 mosaicSize = vec2(20,20);
void main () {
vec2 maskXY = vec2(TextureCoordsVarying.x * TexSize.x,TextureCoordsVarying.y * TexSize.y);
vec2 mosaicXY = vec2(floor(maskXY.x/mosaicSize.x)*mosaicSize.x,floor(maskXY.y/mosaicSize.y)*mosaicSize.y);
vec2 newTexureCoord = vec2(mosaicXY.x/TexSize.x,mosaicXY.y/TexSize.y);
vec4 mask = texture2D(Texture, newTexureCoord);
gl_FragColor = mask;
}
2.2 六边形马赛克
六边形马赛克的效果就是让一张图片,分割成一个一个由六边形组成的图片,让每个六边形的颜色相同,为了方便,取六边形的中心点作为颜色值。
我们取六边形的中心点连接,可以画出一个矩阵:
通过计算可以得到,这些矩阵的长宽比为3:√3。假设六边形的边长为LEN,我们设定的矩阵比例为3LEN : √3LEN ,那么屏幕上的任意点(x, y)所对应的矩阵坐标为(int(x/(3LEN)), int(y/ (√3LEN)))。
结论:wx,wy -> 表示纹理坐标在所对应的矩阵坐标为:
int wx = int(x /( 1.5 * length)); int wy = int(y /(TR * length));
那么我们怎么确定当前点到底显示什么颜色呢?
通过上图可以看到,红点距离d2的蓝点更近一点,因此我们选取d2的蓝点作为统一的颜色。
坐标计算
我们将六边形的中心点连接起来,最终可以得到两种矩形:
我们知道纹理坐标通过映射后可以得到如下图的坐标:
我们在矩形中画一条线,就可以得到上图的2种矩形,那么此时的矩形的纹理坐标则是:
左上:vec2(length * 1.5 * float(wx), length * TR * float(wy));
右上:vec2(length * 1.5 * float(wx + 1), length * TR * float(wy));
左下:vec2(length * 1.5 * float(wx), length * TR * float(wy + 1));
右下:vec2(length * 1.5 * float(wx + 1), length * TR * float(wy + 1));
注:
length:六边形边长;
1.5:矩形宽的比例,length * 1/2 + length * 1/2 + length * cos(60°);
TR:值为0.8666025,矩形长的比例 length * sin(60°);
当纹理坐标计算好,我们就需要判断当前的矩形是属于上图中的矩形1还是矩形2。
通过上图,我们可以通过奇偶判断当前是属于哪一个矩形,如果当前是偶数行偶数列或者奇数行奇数列,则是上图的矩形1,如果当前是奇数行偶数列或者偶数行奇数列,则是上图的矩形2。当矩形是上图的矩形1时,我们求的是左上和右下2个点,因为这2个点才睡六边形的中心点;同理,当矩形为上图中的矩形2时,我们求的是右上和左下2个点。
修改片元着色器.fsh
precision highp float;
uniform sampler2D Texture;
varying vec2 TextureCoordsVarying;
const float mosaicSize = 0.03;
void main (void)
{
float length = mosaicSize;
float TR = 0.866025;
float TB = 1.5;
float x = TextureCoordsVarying.x;
float y = TextureCoordsVarying.y;
int wx = int(x / TB / length);
int wy = int(y / TR / length);
vec2 v1, v2, vn;
if (wx/2 * 2 == wx) {
if (wy/2 * 2 == wy) {
//(0,0),(1,1)
v1 = vec2(length * 1.5 * float(wx), length * TR * float(wy));
v2 = vec2(length * 1.5 * float(wx + 1), length * TR * float(wy + 1));
} else {
//(0,1),(1,0)
v1 = vec2(length * 1.5 * float(wx), length * TR * float(wy + 1));
v2 = vec2(length * 1.5 * float(wx + 1), length * TR * float(wy));
}
}else {
if (wy/2 * 2 == wy) {
//(0,1),(1,0)
v1 = vec2(length * 1.5 * float(wx), length * TR * float(wy + 1));
v2 = vec2(length * 1.5 * float(wx + 1), length * TR * float(wy));
} else {
//(0,0),(1,1)
v1 = vec2(length * 1.5 * float(wx), length * TR * float(wy));
v2 = vec2(length * 1.5 * float(wx + 1), length * TR * float(wy + 1));
}
}
float s1 = sqrt(pow(v1.x - x, 2.0) + pow(v1.y - y, 2.0));
float s2 = sqrt(pow(v2.x - x, 2.0) + pow(v2.y - y, 2.0));
if (s1 < s2) {
vn = v1;
} else {
vn = v2;
}
vec4 color = texture2D(Texture, vn);
gl_FragColor = color;
}
效果
2.3 三角形马赛克
由图可知,一个六边形可以由6个三角形组成,因此,我们需要先画出一个六边形,再判断当前的颜色值处于哪一个三角形里。这里,我们是由角度来判断当前的点处于哪个三角形。
修改片元着色器.fsh
因为是对纹理坐标进行修改,所以我们在片元着色器中进行修改
precision highp float;
uniform sampler2D Texture;
varying vec2 TextureCoordsVarying;
float mosaicSize = 0.03;
void main (void){
const float TR = 0.866025;
const float PI6 = 0.523599;
float x = TextureCoordsVarying.x;
float y = TextureCoordsVarying.y;
int wx = int(x/(1.5 * mosaicSize));
int wy = int(y/(TR * mosaicSize));
vec2 v1, v2, vn;
if (wx / 2 * 2 == wx) {
if (wy/2 * 2 == wy) {
v1 = vec2(mosaicSize * 1.5 * float(wx), mosaicSize * TR * float(wy));
v2 = vec2(mosaicSize * 1.5 * float(wx + 1), mosaicSize * TR * float(wy + 1));
} else {
v1 = vec2(mosaicSize * 1.5 * float(wx), mosaicSize * TR * float(wy + 1));
v2 = vec2(mosaicSize * 1.5 * float(wx + 1), mosaicSize * TR * float(wy));
}
} else {
if (wy/2 * 2 == wy) {
v1 = vec2(mosaicSize * 1.5 * float(wx), mosaicSize * TR * float(wy + 1));
v2 = vec2(mosaicSize * 1.5 * float(wx+1), mosaicSize * TR * float(wy));
} else {
v1 = vec2(mosaicSize * 1.5 * float(wx), mosaicSize * TR * float(wy));
v2 = vec2(mosaicSize * 1.5 * float(wx + 1), mosaicSize * TR * float(wy+1));
}
}
float s1 = sqrt(pow(v1.x - x, 2.0) + pow(v1.y - y, 2.0));
float s2 = sqrt(pow(v2.x - x, 2.0) + pow(v2.y - y, 2.0));
if (s1 < s2) {
vn = v1;
} else {
vn = v2;
}
vec4 mid = texture2D(Texture, vn);
float a = atan((x - vn.x)/(y - vn.y));
vec2 area1 = vec2(vn.x, vn.y - mosaicSize * TR / 2.0);
vec2 area2 = vec2(vn.x + mosaicSize / 2.0, vn.y - mosaicSize * TR / 2.0);
vec2 area3 = vec2(vn.x + mosaicSize / 2.0, vn.y + mosaicSize * TR / 2.0);
vec2 area4 = vec2(vn.x, vn.y + mosaicSize * TR / 2.0);
vec2 area5 = vec2(vn.x - mosaicSize / 2.0, vn.y + mosaicSize * TR / 2.0);
vec2 area6 = vec2(vn.x - mosaicSize / 2.0, vn.y - mosaicSize * TR / 2.0);
if (a >= PI6 && a < PI6 * 3.0) {
vn = area1;
} else if (a >= PI6 * 3.0 && a < PI6 * 5.0) {
vn = area2;
} else if ((a >= PI6 * 5.0 && a <= PI6 * 6.0)|| (a<-PI6 * 5.0 && a>-PI6*6.0)) {
vn = area3;
} else if (a < -PI6 * 3.0 && a >= -PI6 * 5.0) {
vn = area4;
} else if(a <= -PI6 && a> -PI6 * 3.0) {
vn = area5;
} else if (a > -PI6 && a < PI6)
{
vn = area6;
}
vec4 color = texture2D(Texture, vn);
gl_FragColor = color;
}