pytorch网络模型构建中的注意点

记录使用pytorch构建网络模型过程遇到的点

1. 网络模型构建中的问题

1.1 输入变量是Tensor张量

各个模块和网络模型的输入, 一定要是tensor 张量;

可以用一个列表存放多个张量。
如果是张量维度不够,需要升维度,
可以先使用 torch.unsqueeze(dim = expected)
然后再使用torch.cat(dim ) 进行拼接;

  • 需要传递梯度的数据,禁止使用numpy, 也禁止先使用numpy,然后再转换成张量的这种情况出现;

这是因为pytorch的机制是只有是 Tensor 张量的类型,才会有梯度等属性值,如果是numpy这些类别,这些变量并会丢失其梯度值。

1.2 __init__() 方法使用

class ex:
    def __init__(self):
        pass

__init__方法必须接受至少一个参数即self,

Python中,self是指向该对象本身的一个引用

通过在类的内部使用self变量,

类中的方法可以访问自己的成员变量,简单来说,self.varname的意义为”访问该对象的varname属性“

当然,__init__()中可以封装任意的程序逻辑,这是允许的,init()方法还接受任意多个其他参数,允许在初始化时提供一些数据,例如,对于刚刚的worker类,可以这样写:

class worker:
    def __init__(self,name,pay):
        self.name=name
        self.pay=pay

这样,在创建worker类的对象时,必须提供name和pay两个参数:

b=worker('Jim',5000)

Python会自动调用worker.init()方法,并传递参数。

细节参考这里init方法

1.3 内置函数 setattr()

此时,可以使用python自带的内置函数 setattr(), 和对应的getattr()

setattr(object, name, value)

object – 对象。
name – 字符串,对象属性。
value – 属性值。

对已存在的属性进行赋值:
>>>class A(object):
...     bar = 1
... 
>>> a = A()
>>> getattr(a, 'bar')          # 获取属性 bar 值
1
>>> setattr(a, 'bar', 5)       # 设置属性 bar 值
>>> a.bar
5


如果属性不存在会创建一个新的对象属性,并对属性赋值:

>>>class A():
...     name = "runoob"
... 
>>> a = A()
>>> setattr(a, "age", 28)
>>> print(a.age)
28
>>>

setattr() 语法

setattr(object, name, value)

object – 对象。
name – 字符串,对象属性。
value – 属性值。

1.4 网络模型的构建

注意到, 在python的 __init__() 函数中, self 本身就是该类的对象的一个引用,即self是指向该对象本身的一个引用

利用上述这一点,当在神经网络中,

  • 需要给多个属性进行实例化时,
  • 且这多个属性使用的是同一个类进行实例化.

1.4.1 使用 setattr(self, string, object1) 添加属性;

注意到,下面这种方式,由于
Basic_slide_conv() 只经过了一次实例化, 
所以在内存空间中,只会分配一个地址空间给该对象;

虽然后面使用 35 group,  
但这35组本质上使用的同一个对象,即conv_block 该对象;

class Temporal_GroupTrans(nn.Module):
    def __init__(self,   num_classes=10,num_groups=35, drop_prob=0.5, pretrained= True):
        super(Temporal_GroupTrans, self).__init__()

        conv_block = Basic_slide_conv()
        for i in range( num_groups):
            setattr(self, "group" + str(i), conv_block)

        # 自定义transformer模型的初始化, CustomTransformerModel() 在该类中传入初始化模型的参数,
        # nip:512 输入序列中,每个列向量的编码维度, 16: 注意力头的个数
        # 600: 中间mlp 隐藏层的维数,  6: 堆叠transforEncode 编码模块的个数;
        self.trans_model = CustomTransformerModel(512,16,600, 6,droupout=0.5,nclass=4)

如果想要分配35个不同的对象, 即需要分配出35个不同的地址空间用来存储,
那么需要将 Basic_slide_conv() 经过了35次实例化, 
所以需要将 类Basic_slide_conv()  实例化的过程放在循环当中实现;

class Temporal_GroupTrans(nn.Module):
    def __init__(self,   num_classes=10,num_groups=35, drop_prob=0.5, pretrained= True):
        super(Temporal_GroupTrans, self).__init__()

        # conv_block = Basic_slide_conv()
        for i in range( num_groups):
            setattr(self, "group" + str(i), Basil_slide_conv() )

        # 自定义transformer模型的初始化, CustomTransformerModel() 在该类中传入初始化模型的参数,
        # nip:512 输入序列中,每个列向量的编码维度, 16: 注意力头的个数
        # 600: 中间mlp 隐藏层的维数,  6: 堆叠transforEncode 编码模块的个数;
        self.trans_model = CustomTransformerModel(512,16,600, 6,droupout=0.5,nclass=4)

1.4.2 使用 getattr(self, string, object1) 获取属性;

        trans_input_sequence = []

        for i in range(0, num_groups, ):
            #   每组语谱图的大小是一个 (bt, ch,96,12)的矩阵,组与组之间没有重叠;
            cur_group = x[:, :, :, 12 * i:12 * (i + 1)]

            # VARIABLE_fun = "self.group"   # 每一组,与之对应的卷积模块;
            # cur_fun = eval(VARIABLE_fun + str(i ))

            cur_fun = getattr(self, 'group'+str(i))
            cur_group_out = cur_fun(cur_group).unsqueeze(dim=1)  # [bt,1, 512]
            trans_input_sequence.append(cur_group_out)

你可能感兴趣的:(#,深度学习,pytorch,python,深度学习)