多线程多进程多协程(转载)

多线程多进程多协程(转载)

  • Bilibili 蚂蚁学Python UP主说得很好
  • 工作中看视频不方便,截取重点部分改为文字版,方便抄作业
  • 原地址:https://www.bilibili.com/video/BV1bK411A7tV

多线程

  1. 定义一个函数
def my_func(a,b):
    do_something(a,b)
  1. 创建线程
import threading

t = threading.Thread(target=my_func, args=(a, b))
  1. 启动线程
t.start()
  1. 等待结束
t.join()

队列

  • queue.Queue是线程安全的
import queue

q = queue.Queue()

# 添加与获取
q.put(time)
item = q.get()

# 查看状态
q.qsize()
q.empty()
q.full()

线程安全(锁)

  1. try-finally
import threading

lock = threading.Lock()
lock.acquire()
try:
    # do something
finally:
    lock.release()
  1. with
import threading

lock = threading.Lock()
with lock:
    # do something

线程池

  1. map函数,结果预入参顺序对应
from concurrent.futures import ThreadPoolExecutor

arg_list = []

with ThreadPoolExecutor() as pool:
    results = pool.map(my_func, arg_list)

    for result in results:
        print(results)
  1. submit函数,as_completed顺序可按完成顺序
from concurrent.futures import ThreadPoolExecutor, as_completed

arg_list = []

with ThreadPoolExecutor() as pool:
    futures = [pool.submit(my_func, arg) for arg in arg_list]

    # 按输入顺序
    for future in futures:
        print(future.result())

    # 按完成顺序
    for future in as_completed(futures):
        print(future.result())

Flask中使用线程池

import time
from concurrent.futures import ThreadPoolExecutor
from flask import Flask

app = Flask(__name__)
pool = ThreadPoolExecutor()


def do_1():
    time.sleep(1)
    return 'do_1'


def do_2():
    time.sleep(1)
    return 'do_2'


def do_3():
    time.sleep(1)
    return 'do_3'


@app.route("/")
def index():
    result_1 = pool.submit(do_1)
    result_2 = pool.submit(do_2)
    result_3 = pool.submit(do_3)
    return {
        '1': result_1.result(),
        '2': result_2.result(),
        '3': result_3.result(),
    }


if __name__ == "__main__":
    app.run()

多进程

图片截图自 蚂蚁学Python Bilibili 03:00

multiprocessing.png

Flask使用多进程

import time
from concurrent.futures import ProcessPoolExecutor
from flask import Flask

app = Flask(__name__)


def do_1():
    time.sleep(1)
    return 'do_1'


def do_2():
    time.sleep(1)
    return 'do_2'


def do_3():
    time.sleep(1)
    return 'do_3'


@app.route("/")
def index():
    result_1 = pool.submit(do_1)
    result_2 = pool.submit(do_2)
    result_3 = pool.submit(do_3)
    return {
        '1': result_1.result(),
        '2': result_2.result(),
        '3': result_3.result(),
    }


if __name__ == "__main__":
    pool = ProcessPoolExecutor()
    app.run()

协程:asyncio、await

import asyncio
import aiohttp

loop = asyncio.get_event_loop()


async def get_url(url):
    async with aiohttp.ClientSession() as session:
        async with session.get(url) as resp:
            result = await resp.text()
            print(f"url:{url},{len(result)}")


urls = [f"https://www.cnblogs.com/#p{page}" for page in range(1, 50 + 1)]

tasks = [loop.create_task(get_url(url)) for url in urls]

loop.run_until_complete(asyncio.wait(tasks))

控制asyncio并发数

  1. try-finally
import asyncio
sem = asyncio.Semaphore(10)

await sem.acquire()
try:
    # do something
finally:
    sem.release()
  1. with
import asyncio
sem = asyncio.Semaphore(10)

async with sem:
    # do something
  • 举例
import asyncio
import aiohttp

loop = asyncio.get_event_loop()

# 限制10个并发
semaphore = asyncio.Semaphore(10)


async def get_url(url):
    async with semaphore:
        async with aiohttp.ClientSession() as session:
            async with session.get(url) as resp:
                result = await resp.text()
                print(f"url:{url},{len(result)}")


urls = [f"https://www.cnblogs.com/#p{page}" for page in range(1, 50 + 1)]

tasks = [loop.create_task(get_url(url)) for url in urls]

loop.run_until_complete(asyncio.wait(tasks))

你可能感兴趣的:(多线程多进程多协程(转载))