回归预测 | MATLAB实现BP神经网络多输入多输出回归预测

回归预测 | MATLAB实现BP神经网络多输入多输出回归预测

目录

    • 回归预测 | MATLAB实现BP神经网络多输入多输出回归预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

回归预测 | MATLAB实现BP神经网络多输入多输出回归预测_第1张图片
回归预测 | MATLAB实现BP神经网络多输入多输出回归预测_第2张图片

基本介绍

人工神经网络是一种经典的机器学习模型,随着深度学习的发展神经网络模型日益完善.

  • 神经网络模型实际上是根据训练样本创造出一个多维输入多维输出的函数, 并使用该函数进行预测, 网络的训练过程即为调节该函数参数提高预测精度的过程.神经网络要解决的问题与最小二乘法回归解决的问题并无根本性区别.
  • 回归和分类是常用神经网络处理的两类问题
  • 感知机(Perceptron)是一个简单的线性二分类器, 它保存着输入权重, 根据输入和内置的函数计算输出.人工神经网络中的单个神经元即是感知机.
  • 在前馈神经网络的预测过程中, 数据流从输入到输出单

你可能感兴趣的:(#,BP神经网络,#,ANN人工神经网络,#,MLP多层感知机,BP神经网络,多输入多输出,回归预测)