通过jmap命令可以查看次进程的实例个数以及占用内存的大小
jmap -histo 20252
为了方便查看 我们还可以输出未txt未见 制定输出文件地址
f:(进入f盘目录)
jmap -histo 20252 > ./log.txt
log文件如下
num:序号
instances:实例数量
bytes:占用空间大小
class name:类名称,[C is a char[],[S is a short[],[I is a int[],[B is a byte[],[[I is a int[][]
jmap -heap 20252
还可以通过jmap ‐dump指令生成堆dump(快照信息)输出到目录
jmap ‐dump:format=b,file=eureka.hprof 16944
生成的文件可以放到(可视化工具中)jvisualvm工具中去打开查看文件中的详细信息
和jmap打印出来的东西差不多
设置内存溢出自动导出dump文件(内存很大的时候,可能会导不出来)
- -XX:+HeapDumpOnOutOfMemoryError
- -XX:HeapDumpPath=./ (路径)
代码示例
package com.zgs.demo.jdk;
import java.util.ArrayList;
import java.util.List;
import java.util.UUID;
public class OOMTest {
public static List<Object> list = new ArrayList<>();
// JVM设置
// ‐Xms5M ‐Xmx5M ‐XX:+PrintGCDetails ‐XX:+HeapDumpOnOutOfMemoryError ‐XX:HeapDumpPath=f:\jvm.dump
public static void main(String[] args) {
List<Object> list = new ArrayList<>();
int i = 0;
int j = 0;
while (true) {
list.add(new User(i++, UUID.randomUUID().toString()));
new User(j--, UUID.randomUUID().toString());
}
}
}
将生成的dump文件导入导入jvisualvm工具即可查看
用于生成当前JVM的所有线程快照,可以查看堆栈信息,线程快照是虚拟机每一条线程正在执行的方法,目的是定位线程出现长时间停顿的原因。
比如出现了死锁,如何快速定位是哪里出了问题
死锁代码如下
package com.zgs.demo.jdk;
/**
* @author zgs
* @date 2022/12/3 17:49
* @decription 死锁代码示例
*/
public class DeadLockTest {
private static Object lock1 = new Object();
private static Object lock2 = new Object();
public static void main(String[] args) {
new Thread(() -> {
synchronized (lock1) {
try {
System.out.println("thread1 begin");
Thread.sleep(5000);
} catch (InterruptedException e) {
}
synchronized (lock2) {
System.out.println("thread1 end");
}
}
}).start();
new Thread(() -> {
synchronized (lock2) {
try {
System.out.println("thread2 begin");
Thread.sleep(5000);
} catch (InterruptedException e) {
}
synchronized (lock1) {
System.out.println("thread2 end");
}
}
}).start();
System.out.println("main thread end");
}
}
使用jstock命令,结果如下
jstack 16612
也可以使用jvisualvm也可以直接检测到死锁
dump文件如下
1 java ‐Dcom.sun.management.jmxremote.port=8888 ‐Djava.rmi.server.hostname=192.168.50.60‐Dcom.sun.management.jmxremote.ssl=false ‐Dcom.sun.management.jmxremote.authenticate=false ‐jar microservice‐eureka‐server.jar
PS:
-Dcom.sun.management.jmxremote.port 为远程机器的JMX端口
-Djava.rmi.server.hostname 为远程机器IP
tomcat的JMX配置:在catalina.sh文件里的最后一个JAVA_OPTS的赋值语句下一行增加如下配置行
JAVA_OPTS=“$JAVA_OPTS ‐Dcom.sun.management.jmxremote.port=8888 ‐Djava.rmi.server.hostname=192.168.50.60 ‐Dcom.sun.management.jmxremote.ssl=false ‐Dcom.sun.management.jmxremote.authenticate=false”
package com.zgs.demo.jdk;
/**
* @author zgs
* @date 2022年08月22日 16:39:00
*/
public class Math {
private static int initData = 6666;
public static User user = new User();
private int compute() {
int a = 1;
int b = 3;
int c = (a + b) * 10;
return c;
}
public static void main(String[] args) {
Math math = new Math();
while (true){
math.compute();
}
}
}
使用top命令查询到cpu占用搞得进程id pid
然后使用命令top -p pid ,显示此java进程的内存情况,pid是你的java进程号,比如19663
按H,获取此进程中每个线程的内存情况
找到内存和cpu占用最高的线程tid,比如19664
转为十六进制得到 0x4cd0,此为线程id的十六进制表示
执行 jstack 19663|grep -A 10 4cd0,得到线程堆栈信息中 4cd0
这个线程所在行的后面10行,从堆栈中可以发现导致cpu飙高的调用方法
查看对应的堆栈信息找出可能存在问题的代码
jinfo -flags 3312
可查看jvm启动参数
jinfo -sysprops 3312
可以查看系统的java属性
jstat命令可以查看堆内存各部分的使用量,以及加载类的数量。命令的格式如下:
jstat [-命令选项] [vmid] [间隔时间(毫秒)] [查询次数]
垃圾回收统计
jstat - gc 3312
S0C:第一个幸存区的大小,单位KB
S1C:第二个幸存区的大小
S0U:第一个幸存区的使用大小
S1U:第二个幸存区的使用大小
EC:伊甸园区的大小
EU:伊甸园区的使用大小
OC:老年代大小
OU:老年代使用大小
MC:方法区大小(元空间)
MU:方法区使用大小
CCSC:压缩类空间大小
CCSU:压缩类空间使用大小
YGC:年轻代垃圾回收次数
YGCT:年轻代垃圾回收消耗时间,单位s
FGC:老年代垃圾回收次数
FGCT:老年代垃圾回收消耗时间,单位s
GCT:垃圾回收消耗总时间,单位s
堆内存统计
jstat -gccapacity 3312
NGCMN:新生代最小容量
NGCMX:新生代最大容量
NGC:当前新生代容量
S0C:第一个幸存区大小
S1C:第二个幸存区的大小
EC:伊甸园区的大小
OGCMN:老年代最小容量
OGCMX:老年代最大容量
OGC:当前老年代大小
OC:当前老年代大小
MCMN:最小元数据容量
MCMX:最大元数据容量
MC:当前元数据空间大小
CCSMN:最小压缩类空间大小
CCSMX:最大压缩类空间大小
CCSC:当前压缩类空间大小
YGC:年轻代gc次数
FGC:老年代GC次数
新生代垃圾回收统计
jstat -gcnew 3312
S0C:第一个幸存区的大小
S1C:第二个幸存区的大小
S0U:第一个幸存区的使用大小
S1U:第二个幸存区的使用大小
TT:对象在新生代存活的次数
MTT:对象在新生代存活的最大次数
DSS:期望的幸存区大小
EC:伊甸园区的大小
EU:伊甸园区的使用大小
YGC:年轻代垃圾回收次数
YGCT:年轻代垃圾回收消耗时间
新生代内存统计
jstat -gcnewcapacity 3312
NGCMN:新生代最小容量
NGCMX:新生代最大容量
NGC:当前新生代容量
S0CMX:最大幸存1区大小
S0C:当前幸存1区大小
S1CMX:最大幸存2区大小
S1C:当前幸存2区大小
ECMX:最大伊甸园区大小
EC:当前伊甸园区大小
YGC:年轻代垃圾回收次数
FGC:老年代回收次数
老年代垃圾回收统计
jstat -gcold 3312
MC:方法区大小
MU:方法区使用大小
CCSC:压缩类空间大小
CCSU:压缩类空间使用大小
OC:老年代大小
OU:老年代使用大小
YGC:年轻代垃圾回收次数
FGC:老年代垃圾回收次数
FGCT:老年代垃圾回收消耗时间
GCT:垃圾回收消耗总时间
老年代内存统计
jstat -gcoldcapacity 3312
OGCMN:老年代最小容量
OGCMX:老年代最大容量
OGC:当前老年代大小
OC:老年代大小
YGC:年轻代垃圾回收次数
FGC:老年代垃圾回收次数
FGCT:老年代垃圾回收消耗时间
GCT:垃圾回收消耗总时间
元数据空间统计
jstat -gcmetacapacity 3312
MCMN:最小元数据容量
MCMX:最大元数据容量
MC:当前元数据空间大小
CCSMN:最小压缩类空间大小
CCSMX:最大压缩类空间大小
CCSC:当前压缩类空间大小
YGC:年轻代垃圾回收次数
FGC:老年代垃圾回收次数
FGCT:老年代垃圾回收消耗时间
GCT:垃圾回收消耗总时间
查看堆中各个区域已使用空间占其总空间的百分比
jstat -gcutil 3312
S0:幸存1区当前使用比例
S1:幸存2区当前使用比例
E:伊甸园区使用比例
O:老年代使用比例
M:元数据区使用比例
CCS:压缩使用比例
YGC:年轻代垃圾回收次数
FGC:老年代垃圾回收次数
FGCT:老年代垃圾回收消耗时间
GCT:垃圾回收消耗总时间
JVM运行情况预估
用 jstat gc -pid 命令可以计算出如下一些关键数据,有了这些数据就可以采用之前介绍过的优化思路,先给自己的系统设置一些初始性的JVM参数,比如堆内存大小,年轻代大小,Eden和Survivor的比例,老年代的大小,大对象的阈值,大龄对象进入老年代的阈值等。
年轻代对象增长的速率
可以执行命令 jstat -gc pid 1000 10 (每隔1秒执行1次命令,共执行10次),通过观察EU(eden区的使用)来估算每秒eden大概新增多少对象,如果系统负载不高,可以把频率1秒换成1分钟,甚至10分钟来观察整体情况。注意,一般系统可能有高峰期和日常期,所以需要在不同的时间分别估算不同情况下对象增长速率。
Young GC的触发频率和每次耗时
知道年轻代对象增长速率我们就能推根据eden区的大小推算出Young GC大概多久触发一次,Young GC的平均耗时可以通过 YGCT/YGC公式算出,根据结果我们大概就能知道系统大概多久会因为Young GC的执行而卡顿多久。
每次Young GC后有多少对象存活和进入老年代
这个因为之前已经大概知道Young GC的频率,假设是每5分钟一次,那么可以执行命令 jstat -gc pid 300000 10 ,观察每次结果eden,survivor和老年代使用的变化情况,在每次gc后eden区使用一般会大幅减少,survivor和老年代都有可能增长,这些增长的对象就是每次Young GC后存活的对象,同时还可以看出每次Young GC后进去老年代大概多少对象,从而可以推算出老年代对象增长速率。
Full GC的触发频率和每次耗时
知道了老年代对象的增长速率就可以推算出Full GC的触发频率了,Full GC的每次耗时可以用公式 FGCT/FGC 计算得出。
优化思路
其实简单来说就是尽量让每次YoungGC后的存活对象小于Survivor区域的50%,都留存在年轻代里。尽量别让对象进入老年代。尽量减少Full GC的频率,避免频繁Full GC对JVM性能的影响。
系统频繁Full GC导致系统卡顿是怎么回事
机器配置:2核4G
JVM内存大小:2G
系统运行时间:7天
期间发生的Full GC次数和耗时:500多次,200多秒
期间发生的Young GC次数和耗时:1万多次,500多秒
大致算下来每天会发生70多次Full GC,平均每小时3次,每次Full GC在400毫秒左右; 每天会发生1000多次Young
GC,每分钟会发生1次,每次Young GC在50毫秒左右。
JVM参数设置如下:
1 ‐Xms1536M ‐Xmx1536M ‐Xmn512M ‐Xss256K ‐XX:SurvivorRatio=6 ‐XX:MetaspaceSize=256M‐XX:MaxMetaspaceSize=256M
2 ‐XX:+UseParNewGC ‐XX:+UseConcMarkSweepGC ‐XX:CMSInitiatingOccupancyFraction=75 ‐XX:+UseCMSInitiatingOccupancyOnly
大家可以结合对象挪动到老年代那些规则推理下我们这个程序可能存在的一些问题;经过分析感觉可能会由于对象动态年龄判断机制导致fullgc较为频繁
模拟了一个示例程序(见课程对应工程代码:jvm-full-gc),打印了jstat的结果如下:
jstat -gc 14196 2000 10000
发现执行方法后再频繁的fullgc
对于对象动态年龄判断机制导致的full gc较为频繁可以先试着优化下JVM参数,把年轻代适当调大点:
1 ‐Xms1536M ‐Xmx1536M ‐Xmn1024M ‐Xss256K ‐XX:SurvivorRatio=6 ‐XX:MetaspaceSize=256M ‐XX:MaxMetaspaceSize=256M
2 ‐XX:+UseParNewGC ‐XX:+UseConcMarkSweepGC ‐XX:CMSInitiatingOccupancyFraction=92 ‐XX:+UseCMSInitiatingOccupancyOnly
优化完发现没什么变化,full gc的次数比minor gc的次数还多了
我们可以推测下full gc比minor gc还多的原因有哪些?
1、元空间不够导致的多余full gc
2、显示调用System.gc()造成多余的fullgc,这种一般线上尽量通过XX:+DisableExplicitGC参数禁用,如果加上了这个JVM启动参数,那么代码中调用System.gc()没有任何效果
3、老年代空间分配担保机制
最快速度分析完这些我们推测的原因以及优化后,我们发现young gc和full
gc依然很频繁了,而且看到有大量的对象频繁的被挪动到老年代,这种情况我们可以借助jmap命令大概看下是什么对象
jmap -histo 25012
可以发现里面生成了大量的user对象
这个可能是问题所在,但不确定,还必须找到对应的代码确认,如何去找对应的代码了?
1、代码里全文搜索生成User对象的地方(适合只有少数几处地方的情况)
2、如果生成User对象的地方太多,无法定位具体代码,我们可以同时分析下占用cpu较高的线程,一般有大量对象不断产生,对应的方法代码肯定会被频繁调用,占用的cpu必然较高
可以用上面讲过的jstack或jvisualvm来定位cpu使用较高的代码。
jvisualvm
图二就可以定位到具体的代码
定位代码结果如下
package jvm;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
import java.util.ArrayList;
@RestController
public class IndexController {
@RequestMapping("/user/process")
public String processUserData() throws InterruptedException {
ArrayList<User> users = queryUsers();
for (User user: users) {
//TODO 业务处理
System.out.println("user:" + user.toString());
}
return "end";
}
/**
* 模拟批量查询用户场景
* @return
*/
private ArrayList<User> queryUsers() {
ArrayList<User> users = new ArrayList<>();
for (int i = 0; i < 5000; i++) {
users.add(new User(i,"zhuge"));
}
return users;
}
}
同时,java的代码也是需要优化的,一次查询出500M的对象出来,明显不合适,要根据之前说的各种原则尽量优化到合适的值,尽量消除这种朝生夕死的对象导致的fullgc,
我们将处理的一次条数设置为100看看效果
通过jstat -gc 26928 2000 10000查看,可以发现很少fullgc了
再给大家讲一种情况,一般电商架构可能会使用多级缓存架构,就是redis加上JVM级缓存,大多数同学可能为了图方便对于JVM级缓存就简单使用一个hashmap,于是不断往里面放缓存数据,但是很少考虑这个map的容量问题,结果这个缓存map越来越大,一直占用着老年代的很多空间,时间长了就会导致full gc非常频繁,这就是一种内存泄漏,对于一些老旧数据没有及时清理导致一直占用着宝贵的内存资源,时间长了除了导致full gc,还有可能导致OOM。这种情况完全可以考虑采用一些成熟的JVM级缓存框架来解决,比如ehcache等自带一些LRU数据淘汰算法的框架来作为JVM级的缓存。