- Java医学图像处理系统实战源码剖析
好学的Jack
本文还有配套的精品资源,点击获取简介:本项目详细介绍了基于Java的医学图像处理系统,通过使用Java提供的图像处理库和多线程技术,实现了医疗图像的读取、预处理、分析、分割、存储及报告生成等关键功能。系统不仅支持多种图像格式和数据库集成,还考虑了用户界面设计和数据安全性,为医疗领域的图像分析需求提供了解决方案。学生和开发者可通过源码学习和实践,深入了解如何构建一个功能全面的医学图像处理平台。1.J
- 推荐文章:Faster_Mean_Shift - GPU加速的像素嵌入框架利器
乌芬维Maisie
推荐文章:Faster_Mean_Shift-GPU加速的像素嵌入框架利器去发现同类优质开源项目:https://gitcode.com/在生物医学图像处理和细胞追踪领域,高效且精准的算法是必不可少的工具。今天,我们向您推荐一个优秀的开源项目——Faster_Mean_Shift,这是一个基于GPU加速的快速均值漂移算法,特别为递归神经网络(RNN)像素嵌入框架设计,用于整体细胞分割和跟踪。1、项
- Ubuntu 安装 FSL 及多模态脑MRI的去颅骨处理(含 HD-BET 深度学习方法)
Joker 007
医学影像处理ubuntu深度学习linux
脑部医学图像处理的第一步通常是去颅骨(SkullStripping),也叫脑提取(BrainExtraction)。本文将介绍如何在Ubuntu系统中安装FSL,使用其经典工具BET进行T1、T2、PD模态的去颅骨操作,并补充介绍基于深度学习的更强大方法HD-BET。一、FSL安装与环境配置(Ubuntu)FSL(FMRIBSoftwareLibrary)是牛津大学开发的医学图像处理工具集,支持大
- 性能远超 SAM 系模型,苏黎世大学等开发通用 3D 血管分割基础模型,入选 CVPR 2025
hyperai
如果把人的身体比作一座庞大的城市,那么血管无疑就是这座城市的「道路」,动脉、静脉以及毛细血管对应着高速公路、城市道路以及乡间小道,它们相互协作,通过血液将营养物质、氧气等输送到身体各处,从而维持着这座「城市」的高效、稳定运行。而当这些道路出现问题时,人们的身体自然也会随之发生病变。血管分割是检查这些「道路」是否存在问题的重要手段,如同城市建设中通过交通影像发现问题一般,它是医学图像处理中的一项关键
- 《基于ITK和VTK的医学图像处理系统设计与实现》
麋芜
基于ITK和VTK的医学图像处理系统设计与实现封小云.基于ITK和VTK的医学图像处理系统设计与实现[D].辽宁:大连理工大学,2013.介绍:本文基于ITK和VTK类库,实现了医学图像的可视化设计,对系统各组成部分进行了分析和讨论。系统通过ITK读入医学图像并进行简单地处理后,输出的结果连接到VTK的管道模型上进行医学图像的三维重建,将重建的结果嵌入到Qt编写的界面上进行显示,实现了系统人机交互
- 探索CF-Loss:视网膜多类血管分割与测量的新视角
RockLiu@805
机器视觉深度学习模块深度学习人工智能计算机视觉
探索CF-Loss:视网膜多类血管分割与测量的新视角引言在医学图像处理领域,精确的图像分割和特征测量对于准确诊断和治疗方案制定至关重要。特别是在糖尿病视网膜病变等疾病的早期检测中,如何有效分割血管并准确测量其特征,成为了研究人员关注的重点。今天,我们将深入探索一种创新性的损失函数——CF-Loss(Clinically-relevantfeatureoptimisedlossfunction)。这
- SAM应用:医学图像和视频中的任何内容分割中的基准测试与部署
烧技湾
AI&ComputerVisionSAMMED2SAN医学图像分割分割一切
医学图像和视频中的任何内容分割:基准测试与部署目录摘要:一、引言1.1SAM2在医学图像和视频中的应用二.结果2.1数据集和评估协议2.2二维图像分割的评估结果三讨论四局限性和未来的工作五、方法5.1数据来源和预处理5.2微调协议5.3评估指标总结关键字:SAM、分割一切基础模型、医学图像、视频、多模态最近医学分割模型发展迅速,基于SAM的医学图像处理得到了进一步的发展。为了追踪医学图像处理的最新
- ️ 总览:TotalSegmentator - 医学影像分割的革新者
金斐茉
️总览:TotalSegmentator-医学影像分割的革新者TotalSegmentatorToolforrobustsegmentationof>100importantanatomicalstructuresinCTimages项目地址:https://gitcode.com/gh_mirrors/to/TotalSegmentator在医学图像处理领域中,精确且高效的自动分割工具对于研究和
- DICOM标准详解
浩瀚之水_csdn
三维图像dcm
DICOM(DigitalImagingandCommunicationsinMedicine)标准是医学图像和相关信息的数字图像通信的国际标准。以下是DICOM标准的详细内容:一、概述DICOM标准由医学图像处理和通信的专业组织DICOM标准委员会(DICOMStandardsCommittee)负责维护和更新。它定义了医学影像设备(如X射线、CT扫描、MRI等)生成、存储、传输和显示的规范,以
- e_ophtha_MA眼底数据集—根据微血管瘤标注Mask绘制Contour轮廓图
curemoon
眼底医学图像处理:微血管瘤Microaneurysm检测分割采用数据集e_ophtha中的e_ophtha_MA,此数据集可从互联网下载实现根据微血管瘤标注Mask,在原图绘制轮廓图,以直观了解微血管瘤,以便检测分割微血管瘤1.可展示数据集中原图和绘制轮廓图的并列拼接图2.可保存Mask,原图,根据标注绘制轮廓图的眼底图的拼接图1.原图和绘制轮廓图的并列拼接图2.保存Mask,原图,根据标注绘制轮
- 【深度学习】: 脑部MRI图像分割
X.AI666
深度学习深度学习人工智能
清华大学驭风计划课程链接学堂在线-精品在线课程学习平台(xuetangx.com)代码和报告均为本人自己实现(实验满分),只展示主要任务实验结果,如果需要详细的实验报告或者代码可以私聊博主,接实验技术指导1对1有任何疑问或者问题,也欢迎私信博主,大家可以相互讨论交流哟~~案例4:脑部MRI图像分割相关知识点:语义分割、医学图像处理(skimage,medpy)、可视化(matplotlib)1任务
- U-Net的原理
来自宇宙的曹先生
深度学习
U-Net是一种专为医学图像分割而设计的卷积神经网络(CNN)架构。它于2015年由OlafRonneberger、PhilippFischer和ThomasBrox提出,特别适用于需要精确定位的应用场景,比如生物医学图像处理。以下是U-Net的主要原理和组成部分的详细解释:U-Net的结构对称的U形结构:U-Net的主要特点是其U型对称结构,由一个“编码器”(收缩路径)和一个“解码器”(扩张路径
- 基于深度学习的细胞感染性识别与判定
OverlordDuke
深度学习神经网络深度学习人工智能
基于深度学习的细胞感染性识别与判定基于深度学习的细胞感染性识别与判定引言项目背景项目意义项目实施数据采集与预处理模型选择与训练模型评估与优化结果与展望结论基于深度学习的细胞感染性识别与判定引言随着深度学习技术的不断发展,其在医学图像处理领域的应用逐渐成为研究的热点。本文将探讨基于深度学习的细胞感染性识别与判定,该项目在生物医学领域具有重要的意义。项目背景细胞感染性识别与判定是生物医学领域的一项关键
- U-Net——第一课
湘溶溶
分割深度学习人工智能深度学习学习python
一.论文研究背景、成果及意义二、unet论文结构三、算法架构一.论文研究背景、成果及意义医学图像分割是医学图像处理与分析领域的复杂而关键的步骤,目的是将医学图像中具有某些特殊含义的部分分割出来,并提取相关特征,为临床诊疗和病理学研究提供可靠的依据,辅助医生作出更为准确的诊断。①处理对象:各种不同成像机理的医学影像,主要有X-射线成像(X-CT)、核磁共振成像(MRI)、核医学成像(NMI)和超声波
- 毕业论文idea
pythonSuperman
毕业设计
三大模块分级、分类、系统多看医学图像处理毕业论文。SwinTransformer的模型表现不如MobileViT使用高像素的数据集在云服务器上训练时,如果您发现SwinTransformer的模型表现不如MobileViT,这可能由几个因素导致:模型架构与数据匹配度:SwinTransformer虽然设计用于处理复杂和大型图像数据,但其表现还受到数据特性的影响。例如,如果数据集中的图像特征更适合于
- 计算机视觉:从数据量、数据质量、数据复杂度、数据隐私介绍图片数据处理难度
幻风_huanfeng
计算机视觉计算机视觉人工智能图像处理算法机器学习
本文重点计算机视觉是一门研究如何让计算机处理和理解图像的学科,其应用范围非常广泛,包括图像识别、目标检测、人脸识别、车辆识别、医学图像处理等。在计算机视觉领域中,图片数据的处理是非常重要的一环,但也是非常具有挑战性的。本文将从数据量、数据质量、数据复杂度等方面,详细介绍图片数据处理的难点。一、数据量在计算机视觉领域中,图片数据的数量通常非常庞大,这就给数据的处理带来了很大的挑战。一方面,大量的数据
- WebGL技术在医学图像处理的应用
super_Dev_OP
信息可视化
WebGL技术在医学图像处理方面具有广泛的应用,提供了实时、交互式的图像渲染和分析工具。以下是WebGL在医学图像处理中的一些应用场景,希望对大家有所帮助。北京木奇移动技术有限公司,专业的软件外包开发公司,欢迎交流合作。1.三维图像重建:WebGL可以用于呈现和交互式处理医学三维图像,如CT扫描、MRI和超声等。医生和研究人员可以通过Web浏览器实时查看和操控复杂的三维图像。2.虚拟解剖学:利用W
- 【论文阅读】MCANet: Medical Image Segmentation with Multi-Scale Cross-Axis Attention
AI浩
人工智能论文阅读
文章目录摘要创新点总结实现效果总结摘要链接:https://arxiv.org/abs/2312.08866医学图像分割是医学图像处理和计算机视觉领域的关键挑战之一。由于病变区域或器官的大小和形状各异,有效地捕捉多尺度信息和建立像素间的长距离依赖性至关重要。本文提出了一种基于高效轴向注意力的多尺度交叉轴注意(MCA)方法来解决这些问题。MCA通过计算两个并行轴向注意力之间的双向交叉注意力,以更好地
- Python修改图片尺寸、裁剪图片、拼接图片
波比波
计算机视觉深度学习python计算机视觉图像处理
在YOLO算法中对输入的图片有尺寸大小要求,如果图片太大网络就提取不到特征,无法检测图片中的物体。在进行医学图像处理的时候,一般医学影像拍出来的图片分辨率很大,细胞非常小,所以不能将图片直接拿去检测,需要做一些处理:以我现有的图片为例,图像尺寸为10150×15050,可以切割为很多50×50的小方图,但是我觉得50×50尺寸较小,影响网络检测速度,所以先将图片尺寸通过加白边的方式扩展到10500
- VTK-等值面提取
@左左@右右
VTK图像处理计算机视觉人工智能VTK
等值面等值面(线)提取是一种常用的可视化技术,常应用于医学、地质、气象等领域。例如,在医学图像处理中,由于CT、MRI等图像分辨率越来越高,虽然体绘制技术可以清晰地对数据内部结构进行可视化,但是其计算量和效率却制约了其使用。此时可通过等值面提取技术,仅提取感兴趣的一个或者几个组织轮廓,并生成网格模型以供后续的处理和研究。根据数据类型的不同,VTK中提供了多个等值面提取类,其类图如图所示VTK中的等
- 会议剪影 | 思腾合力受邀出席首届CCF数字医学学术年会
Jericho2022
云计算搜索引擎
首届CCF数字医学学术年会(CCFDigitalMedicineSymposium,DMS)于2023年12月15日-17日在苏州CCF业务总部召开。这次会议的成功召开,标志着数字医学领域进入了一个新的时代,计算机技术和人工智能在医学领域的应用和发展得到了更广泛的关注和重视。本次会议由中国计算机学会主办,CCF数字医学分会、复旦大学和上海市医学图像处理与计算机辅助手术重点实验室联合承办,中国科学院
- Opencv实验合集——实验四:图片融合
我药打十个
Opencv系列opencv计算机视觉人工智能
1.概念图像融合是将两个或多个图像结合在一起,创建一个新的图像的过程。这个过程的目标通常是通过合并图像的信息来获得比单个图像更全面、更有信息量的结果。图像融合可以在许多领域中应用,包括计算机视觉、遥感、医学图像处理等。融合的方法有很多:加法融合(AdditiveFusion):将每个图像的对应像素相加。这种方法通常用于合并具有相似亮度的图像,例如红外图像和可见光图像。权重融合(WeightedFu
- 基于Swin_Transformer的图像超分辨率系统
xuehai996
transformer深度学习人工智能
1.研究背景与意义项目参考AAAIAssociationfortheAdvancementofArtificialIntelligence研究背景与意义随着科技的不断发展,图像超分辨率技术在计算机视觉领域中变得越来越重要。图像超分辨率是指通过使用计算机算法将低分辨率图像转换为高分辨率图像的过程。这项技术在许多领域都有广泛的应用,包括医学图像处理、监控摄像头、卫星图像处理等。在过去的几十年里,图像超
- 分水岭算法的应用
此间不留白
上海交通大学医学图像处理数学形态学一个应用是分水岭算法,为了便于理解,可以将图像的灰度空间与地球表面的地形高度相类比,据此,发明了应用于图像领域的分水岭算法。测地线距离假设,如下图所示的一个岛屿,要从点走到点,虚线所表示的是最短的直线距离,也就是欧式距离,考虑到现实情况,不能穿过水面到达目标地点,所以,能够从起点到终点的实际通行路线中最短的距离成为测地线距离。通过以上分析,给出测地线距离的定义:给
- 会议邀请 | 思腾合力邀您共赴首届CCF数字医学学术年会
Jericho2022
搜索引擎
首届CCF数字医学学术年会(CCFDigitalMedicineSymposium,DMS)将于2023年12月15日-17日在苏州CCF业务总部召开,由中国计算机学会主办,CCF数字医学分会、复旦大学和上海市医学图像处理与计算机辅助手术重点实验室联合承办,中国科学院苏州生物医学工程技术研究所协办。思腾合力作为行业领先的人工智能基础架构解决方案商受邀参加本次盛会。CCF数字医学分会是CCF旗下首个
- python医学图像处理之基于vtk的三维点云表面重建
Cherry330
医学图像处理python图像处理开发语言计算机视觉3d
hello,小伙伴们,好久不见~马上就要到中秋了,不知道大家现在有没有进入学习状态呢?今天呢,要教大家做一个基于vtk的三维点云表面重建。我们通过每个点的坐标值,重建出这个模型。这个不仅可以用于医学图像相关的模型重建,也同样适用于其他三维表面重建哦~那么。话不多说,让我们来实操一下吧!首先,我们需要下载以下三个库。如果缺少某个库的小伙伴请通过“pipinstallXXX”进行下载哦~importn
- python医学图像处理之vtk生成固定方向的圆柱体并保存
Cherry330
医学图像处理numpypython计算机视觉3d图像处理
hello,各位小伙伴,好久不见~假期结束,又该回到我们日常的代码生活中去啦!这几天呢,我遇到一个问题,那就是怎么生成某个固定方向的圆柱体并保存呢?我们都知道啊,vtk直接生成的圆柱体是固定沿y轴生成的。但是如果我们想要生成并保存一个沿着固定方向的圆柱体该怎么办呢?网上有很多小伙伴给出的结果是生成很多个直线最终构成一个沿固定方向的圆柱,但是这种方法,在保存模型或者需要生成多个圆柱体时就变得非常麻烦
- python医学图像处理之三维点云模型特征提取
Cherry330
医学图像处理python图像处理开发语言3d
hello,小伙伴们,今天我们来聊一聊三维模型特征提取。在我们日常对模型进行一些操作(例如,配准、寻找特定点等),我们总是会遇到一个问题,就是如何从三维模型中提取其特征点。解决这个问题的方法有很多,例如,下采样,iss,甚至是深度学习等方法。今天,我会教大家几种基础的方法来进行特征点的提取。先清楚咱们今天的主角——示例的点云模型吧。大家可以猜猜这是什么,嘿嘿~图1示例点云模型首先是超级经典的ISS
- Python-医学图像处理之三维重建(进行切片级重建)
Cherry330
医学图像处理图像处理python3d
对于从事医学图像处理的小伙伴而言,医学图像三维重建并不是一个陌生的东西啦~例如,在对图像分割结果进行展示或者验证时,我们常常通过对分割结果进行三维可视化的方式进行展示和说明。那废话不多说,今天就来教大家如何根据自己的分割结果进行三维重建。这里呢,我用现在正在做的韧带分割进行说明。首先,通过深度学习或者传统方法对医学图像进行分割,得到二值化的分割结果(如图1所示)。将分割结果放置在一个文件夹里。图1
- python医学图像处理之标签制作(json批量转png)
Cherry330
医学图像处理json图像处理深度学习databasepython人工智能计算机视觉
无论是做医学图像分割的小伙伴,还是做其他语义分割的小伙伴,一定都和我一样遇到过这个问题——用labelme制作了标签之后,我们的标签如何转化为图片呢?其实,我们可以通过如下命令进行转化:labelme_json_to_dataset-ofilesfiles\label.json但是,这样每次只能转一张图片,并不是很方便。接下来,就教大家如何批量地将json转换为png。现在,让我们来看一下数据。在
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不