opencv图像阈值处理和图像滤波平滑

opencv图像阈值

  • 阈值处理
    • 简单阈值处理 cv .threshold()
    • 自适应阈值 cv.adaptiveThreshold()
    • Otsu的二值化
  • 图像平滑
    • 2D卷积(图像过滤) cv .filter2D()
    • 图像平均 cv .blur()或者cv.boxFilter()
    • 高斯模糊 cv .GaussianBlur()
    • 中位模糊 cv .medianBlur()
    • 双边滤波 cv.bilateralFilter()

阈值处理

简单阈值处理 cv .threshold()

第一个参数是源图像,它应该是灰度图像。第二个参数是阈值,用于对像素值进行分类。第三个参数是分配给超过阈值的像素值的最大值。第四个参数是OpenCV提供的不同类型的阈值

cv .threshold()返回两个值:第一个是使用的阈值,第二个输出是阈值后的图像

对比不同的阈值输出结果:

import matplotlib.pyplot as plt
import cv2 as cv
img = cv.imread('1.JPG',0)
ret,thresh1 = cv.threshold(img,127,255,cv.THRESH_BINARY)
ret,thresh2 = cv.threshold(img,127,255,cv.THRESH_BINARY_INV)
ret,thresh3 = cv.threshold(img,127,255,cv.THRESH_TRUNC)
ret,thresh4 = cv.threshold(img,127,255,cv.THRESH_TOZERO)
ret,thresh5 = cv.threshold(img,127,255,cv.THRESH_TOZERO_INV)
titles = ['Original Image','BINARY','BINARY_INV','TRUNC','TOZERO','TOZERO_INV']
images = [img, thresh1, thresh2, thresh3, thresh4, thresh5]
for i in range(6):
    plt.subplot(2,3,i+1),plt.imshow(images[i],'gray')
    plt.title(titles[i])
    plt.xticks([]),plt.yticks([])
plt.savefig('img.jpg')
plt.show()
cv.waitKey(0)

opencv图像阈值处理和图像滤波平滑_第1张图片

自适应阈值 cv.adaptiveThreshold()

adaptiveThreshold除了上面参数外,主要包括三个输入参数:

1.adaptiveMethod :决定阈值是如何计算的
cv.ADAPTIVE_THRESH_MEAN_C::阈值是邻近区域的平均值减去常数C
cv.ADAPTIVE_THRESH_GAUSSIAN_C:阈值是邻域值的高斯加权总和减去常数C

2.BLOCKSIZE: 确定附近区域的大小

3.C: 从邻域像素的平均或加权总和中减去的一个常数。

import matplotlib.pyplot as plt
import cv2 as cv
img = cv.imread('1.JPG',0)
thresh1 = cv.adaptiveThreshold(img,255,thresholdType = cv.THRESH_BINARY,adaptiveMethod=cv.ADAPTIVE_THRESH_MEAN_C, blockSize =3, C = 0 )
thresh2 = cv.adaptiveThreshold(img,255,thresholdType = cv.THRESH_BINARY,adaptiveMethod=cv.ADAPTIVE_THRESH_GAUSSIAN_C, blockSize =3, C = 0 )
thresh3 = cv.adaptiveThreshold(img,255,thresholdType = cv.THRESH_BINARY_INV,adaptiveMethod=cv.ADAPTIVE_THRESH_MEAN_C, blockSize =3, C = 0 )
thresh4 = cv.adaptiveThreshold(img,255,thresholdType = cv.THRESH_BINARY_INV,adaptiveMethod=cv.ADAPTIVE_THRESH_MEAN_C, blockSize =3, C = 0 )
images = [thresh1,thresh2,thresh3,thresh4]
for i in range(4):
    plt.subplot(2,2,i+1)
    plt.axis('off')
    plt.imshow(images[i])
plt.savefig('img.jpg')
plt.show()
cv.waitKey(0)

opencv图像阈值处理和图像滤波平滑_第2张图片

Otsu的二值化

在全局阈值化中,我们使用任意选择的值作为阈值,但是Otsu避免任意选择,自动确定这个阈值。
Otsu的方法从图像直方图中确定最佳全局阈值,使用cv .threshold作为附加标志传递。阈值可以任意选择。然后,算法找到最佳阈值,该阈值作为第一输出返回。

import matplotlib.pyplot as plt
import cv2 as cv
img = cv.imread('1.JPG',0)
# 全局阈值
ret1,th1 = cv.threshold(img,127,255,cv.THRESH_BINARY)  #ret = 127
# Otsu阈值
ret2,th2 = cv.threshold(img,0,255,cv.THRESH_BINARY+cv.THRESH_OTSU)  #ret = 129
# 高斯滤波后再采用Otsu阈值
blur = cv.GaussianBlur(img,(5,5),0)
ret3,th3 = cv.threshold(blur,0,255,cv.THRESH_BINARY+cv.THRESH_OTSU)
# 绘制所有图像及其直方图
images = [img, 0, th1,
          img, 0, th2,
          blur, 0, th3]
titles = ['Original Noisy Image','Histogram','Global Thresholding (v=127)',
          'Original Noisy Image','Histogram',"Otsu's Thresholding",
          'Gaussian filtered Image','Histogram',"Otsu's Thresholding"]
for i in range(3):
    plt.subplot(3,3,i*3+1),plt.imshow(images[i*3],'gray')
    plt.title(titles[i*3]), plt.xticks([]), plt.yticks([])
    plt.subplot(3,3,i*3+2),plt.hist(images[i*3].ravel(),256)
    plt.title(titles[i*3+1]), plt.xticks([]), plt.yticks([])
    plt.subplot(3,3,i*3+3),plt.imshow(images[i*3+2],'gray')
    plt.title(titles[i*3+2]), plt.xticks([]), plt.yticks([])
plt.savefig('img.jpg')
plt.show()
cv.waitKey(0)

opencv图像阈值处理和图像滤波平滑_第3张图片

图像平滑

2D卷积(图像过滤) cv .filter2D()

例如一个5X5的均值滤波:
K = 1 25 [ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ] K = \frac{1}{25} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix} K=2511111111111111111111111111
操作:保持这个内核在一个像素上,将所有低于这个内核的25个像素相加,取其平均值,然后用新的平均值替换中心像素。它将对图像中的所有像素继续此操作

import numpy as np
import matplotlib.pyplot as plt
import cv2 as cv
img = cv.imread('1.JPG',0)

kernel = np.ones((5,5), np.float32)/25
dst = cv.filter2D(img,-1,kernel)

plt.subplot(121),plt.imshow(img),plt.title('Original')
plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(dst),plt.title('Averaging')
plt.xticks([]), plt.yticks([])
plt.savefig('img.jpg')
plt.show()
cv.waitKey(0)

opencv图像阈值处理和图像滤波平滑_第4张图片

图像平均 cv .blur()或者cv.boxFilter()

实现时需要指定内核的宽度和高度。3x3归一化框式过滤器:
K = 1 9 [ 1 1 1 1 1 1 1 1 1 ] K = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} K=91111111111

import numpy as np
import matplotlib.pyplot as plt
import cv2 as cv
img = cv.imread('1.JPG',0)

dst = cv.blur(img,(3,3))

plt.subplot(121),plt.imshow(img),plt.title('Original')
plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(dst),plt.title('blurred')
plt.xticks([]), plt.yticks([])
plt.savefig('img.jpg')
plt.show()
cv.waitKey(0)

opencv图像阈值处理和图像滤波平滑_第5张图片

高斯模糊 cv .GaussianBlur()

需要指定内核的宽度高度,该宽度和高度应为正数和奇数。还应指定X和Y方向的标准偏
差,分别为sigmaXsigmaY。高斯模糊对于从图像中去除高斯噪声非常有效。

dst = cv.GaussianBlur(img,(3,3),sigmaX=0)

opencv图像阈值处理和图像滤波平滑_第6张图片

中位模糊 cv .medianBlur()

函数cv.medianBlur() 提取内核区域下所有像素的中值,并将中心元素替换为该中值。这对于消除图像中的椒盐噪声非常有效。

median = cv.medianBlur(img,5)

opencv图像阈值处理和图像滤波平滑_第7张图片

双边滤波 cv.bilateralFilter()

cv.bilateralFilter() 在去除噪声的同时保持边缘清晰锐利非常有效。

blur = cv.bilateralFilter(img,9,75,75)

opencv图像阈值处理和图像滤波平滑_第8张图片

你可能感兴趣的:(opencv学习,opencv,图像处理,python)